1) Check for updates

Journal of Climate Change, Vol. 5, No. 1 (2019), pp. 1-8.
DOI 10.3233/JCC190001

Prediction of the Impact of Climate Change and Land
Use Change on Flood Discharge in the Song Khwae
District, Nan Province, Thailand

Keiichi Igarashi'®, Kuraji Koichiro!, Nobuaki Tanaka' and Nilobol Aranyabhaga?

!Graduate School of Agriculture and Life Science, University of Tokyo, Japan
20ffice of the National Water Resources, Office of the Prime Minister, Thailand
P4 k50-igarashi@uf.a.u-tokyo.ac.jp

Received May 7, 2018; revised and accepted October 5, 2018

Abstract: One of the main challenges in the world is adaptation to the impacts of climate change, and it is
important to understand which impacts will take place in each region. Thailand endures substantial damage from
floods every year and needs accurate measurement to mitigate flood disaster predicted under the looming scenario
of climate change. The predicted impacts of climate change on flood discharge need to consider land use changes
in the future, especially in developing countries because of their vulnerabilities to economic growth. The objective
of this study was the quantitative predictions of the impacts of climate change and land use changes on flood
discharge, using two simulation models at one watershed in the Song Khwae District, Nan Province, Northern
Thailand. This study has three steps: (1) predictions of future land uses (14 scenarios having different proportion
of forest cover), (2) calculation of 3.3 and 10-year return period rainfall for the period of 2006-2016 and 2040-
2050, and (3) comparisons of average daily discharge from 3.3 and 10-year return period rainfall in 14 land use
patterns. The results showed that although climate change will decrease the average daily discharge from the 3.3
and 10-year return period rainfall, discharge from future rainfall that has a 10-year return period, where land use
patterns limit forest areas to less than 45%, will be greater than present levels. These quantitative predictions can
lead to cost-benefits performance analysis and contribute to positive adaptation to climate change.

Keywords: Climate change; Adaptation; Land use; Flood; CLUEs; SWAT.

Introduction

Climate change is one of the biggest issues in the
world today. The Intergovernmental Panel on Climate
Change (IPCC) is warning the opposite risk, increasing
flood discharge and food shortage caused by drought
in the Asian region (Mach et al., 2014). Kundzewicz
et al. (2014) also pointed out that the global impacts of
climate change on flood discharge are not equal to the
impacts at the local scales and necessitate knowledge
of the future risk in each region. He further mentioned
that predictions of the impacts of climate change on
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flood discharge at the basin scale are limited mostly
in developed countries, such as in Europe and North
America. In Japan, Wada et al. (2005) evaluated flood
and drought risk that will be driven by changes in
the rainfall pattern, which are one of the impacts of
climate change. They revealed that in some regions,
flood risk will increase, while in other regions, the risk
of drought will be strengthened. As part of the efforts
in developing countries, Perera et al. (2015) analyzed
flood risk under climate change in Nepal. Their results
showed increasing flood discharge, and a seasonal shift
in its occurrences.
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To predict the impacts of climate change on flood
discharge, an understanding of land use changes as a
factor should also be considered. It is well known that
forests have an ability to mitigate the maximum flood
discharge by retaining excess rainwater. Therefore,
forest lands and bare lands respond differently to
heavy rainfall. Wolfersberger et al. (2015) described
that developing countries preferentially tend to undergo
significant land use changes in a short period. In
addition to urbanization and population increases,
Lambin et al. (2011) suggested that with the economic
growth in developing countries, land uses in the
countryside are affected because of increasing food
export. It is predicted that land uses in local regions in
developing countries will be different from their current
states when the impacts of climate change occur. Thus,
it is important to consider land use changes under the
condition of climate change.

Thailand, one of the countries in the southeast Asia
region, faces flood disaster during every rainy season
(May to October). From August to December in 2011,
an extensive flood disaster caused tremendous damage
over much of Thailand, with 752 human fatalities
(Komori et al., 2012). To mitigate flood disaster,
the Thai government has been promoting forest
conservation since the 1980s (Leblond, 2014) based
on research results that show flood disaster at low
elevation attributed to a loss of forests at high elevation
area. Also, there are some projects ongoing in Thailand
to identify adaptive methods to mitigate flood disaster
under the condition of climate change. Some research
has focused on the flood risk. For example, Amnatsan et
al. (2009) assessed the flood risk under climate change
in Nan Province, while Wangpimool et al. (2013)
evaluated the impacts of land use changes on flood
disaster. However, there are no studies that analyze the
impacts of both climate change and land use changes.

The objective of this study was to quantitatively
predict the impacts of climate change and land use
changes on flood discharge, using two simulation
models at one watershed in the Song Khwae District,
Nan Province, Northern Thailand.

Materials and Methods

Study Area

The watershed in the Song Khwae District in Nan
Province, northern Thailand was selected as the study
area. As of 2016, in northern Thailand, 46% of the local
population worked in the agricultural and fishery sectors
(Thai National Statistical Office, 2016). Furthermore,

crop yields are increasing because of improvements in
agricultural techniques (Suzuki et al., 2014). The main
crop in this region is maize, which is one of the five
major crops (rice, sugar cane, cassava and oil palm and
maize) in Thailand. For the most parts, double cropping
systems with maize are dominant, with rainy season
cropping and dry season cropping (November to April).

In northern Thailand, Nan Province, especially, has
a lot of agricultural land used for maize. The area of
the province is 11,472.1 km?, and agricultural land
accounts for 57%, which is the second largest crop area
in northern Thailand. The areas under maize cultivation
are more than twice that for sugar cane and cassava
(Thai National Statistical Office, 2013). Because of
the intensity of cultivation, a lot of forest lands has
changed to crop lands, and bare lands can be seen after
harvesting of the maize.

Nan River, which has a channel length of 740 km
and a watershed area of 13,130 km? flows through
the middle of the province. A tributary of the Nan
River, which has 612 km? watershed area and flows
in the Song Khwae District, was selected as the target
watershed for this research. This watershed also suffered
extensive damage from floods in 2011. Discharge from
the tributaries was observed by the Royal Irrigation
Department, Thailand (RID). Land use data prepared by
the Land Development Department (LDD) shows that
the forest areas in this watershed increased from 2010 to
2016. The significant potential for land use changes in
the future and the limited missing data relative to other
watersheds were the main reasons why this watershed
was selected.

Data Sources

The GIS data used for running the land use simulation
models, including the location of villages, rivers and
roads, were obtained from the Japan International
Cooperation Agency (JICA). The Digital Elevation
Model (DEM) was downloaded from the United States
Geological Survey (USGS). The soil map was acquired
from the “Thailand on disk Soil View 2.0”, while the
population map was acquired from East View Land
Scan. The LDD provided land use data in raster map
format for 2010 and 2016. All raster data was used in
30 m horizontal and vertical resolution.

For rainfall and other meteorological data, the Thai
Meteorological Department (TMD) supplied daily data
of temperature (Celsius), relative humidity (%) and
wind speed (m/s) data covering the period from April
1, 1993, to March 31, 2016. As no organization had
daily solar radiation data, observation of solar radiation
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(MJ/m?) was conducted at Thung Chang from October
16, 2016, to September 26, 2017. To align the period of
data between solar radiation and others, observed solar
radiation data from Chang Mai (Tanaka et al., 2008)
was also utilized. Figure 1 shows the target watershed
in the Nan Province and the locations of Nan River
and observatories.

Daily rainfall data (mm) from April 1, 1993, to
March 31, 2016 observed by RID at the Song Khwae
observatory and daily discharge data (m?/s) at the N65
observatory were used for the hydrological simulations.
To predict the impacts of climate change on flood
discharge, daily rainfall and other meteorological data
for 2040-2050 generated by Watanabe et al. (2014)
were used. Their data is created under the RCP4.5
and RCPS8.0 downscaling scenarios, and RCP4.5 was
applied to this study due to the limitation of available
data set for the predictions of impacts of climate change
in RCP8.5 scenario.

Land Use Change Simulation

The Conversion of Land Use and its Effects at small
regional extent (CLUEs) model was used in this study
to simulate the future land use scenarios in the target
watershed in 2050. This model was developed to
simulate land use change using empirically quantified
relationships between land uses and its driving factors
(Veldkamp et al., 1996). In contrast to other land use
simulation models, CLUEs can deal with multiple
land use types simultaneously and can be applied at
any scale, from continental level to sub-national level
(Verburg et al., 2004). Zhang et al. (2016) adopted
the CLUEs model to predict spatial distribution of
green manures in crop lands and orchards in 2020 in
the Pinggu District, Beijing, China. They developed
two scenarios using CLUEs: Scenario 1: promotion of
green manures spreading in orchards; and Scenario 2:
promotion of simultaneous green manures planting in
orchards and crop lands. Verburg et al. (2002) examined
the accuracy of the CLUEs model in Sibuyan Island,
the Philippines, and the Klang-Langat watershed in
Malaysia. They concluded that CLUEs can easily be
applied to wide range of study areas and land use change
situations and pointed out that there are some limitations
to simulating land use dynamics in areas without land
use change history.

The CLUEs model predicts future land use scenarios
based on four input data and one optional setting:
(1) spatial policies and restrictions; (2) land use type
specific conversion settings; (3) land use requirements;
and (4) location characteristics for required input data,

and neighbour settings for an optional setting. Land use
conversions are expected with the highest “preference”
for the specific type of land use at that moment in time.
This “preference” is determined by a binomial logit
model calculated following:

1-P
IOg(Ti):ﬁo+ Ble,i+ st Bn Xn,i (1)
where P, is the occurrence probability of land use types
on grid-cells i and independent variables (X) are the
location factors, meaning biophysical or socio-economic
characteristics of grid-cells i such as elevation and
populaton etc. The coefficients (B) are estimated with
a maximum likelihood estimation using the actual land
use information.

In this study, the validation of the CLUEs model was
examined with the actual land use maps in 2010 and
2016. Land use types in these two maps were classified
as “forest”, “crop”, “orchard” and “others”. As location
factors to obtain the logistic regression models, eight
biophysical and socio-economic characteristics were
applied: (1) population; (2) elevation; (3) slope; (4)
aspect; (5) distance to city; (6) distance to village; (7)
and (8) distance to road and to river. However, there
were some areas where land use changes happened from
2010 to 2016 that the logistic regression model could
not express. But, these represented changes that could
not be seen in the land use change history. Therefore,
in this validation, land use change restrictions were
applied, and those areas were designed as “no change
will occur in this validation period”. Finally, in order to
consider the effects of neighbourhood land use types,
neighbour settings were used in this simulation. The
validation results gave a kappa coefficient (k) value of
0.86 representing very good agreement, and precisions
of each land use type: forest, crop, orchard, others, were
0.96, 0.91, 0.68, and 0.98, respectively. These values
indicate that the CLUEs model can be applied in this
target watershed to predict future land use scenarios.

To consider the impacts of land use changes on flood
discharge, 13 scenarios having different proportions of
forest area were simulated. Based on the proportion of
forest areas in 2016 (70%), its value was changed to 8,
15, 20, 25, 30, 35, 40, 45, 50, 55, 60 and 80% in the
simulated land use scenarios in 2050 (12 scenarios). In
addition to them, a business as usual scenario (BAU
scenario) was prepared. In the BAU scenario, land
use changes from 2010 to 2016 were retained until
2050 (75% forest area). The same logistic regressions
with validation were used for all these simulations. No
restricted areas were applied. In the simulations of the
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12 scenarios, the areas of land use type “orchard” was
increased by 200.25 ha each year, which is the same
value as between 2010 and 2016, while “others” was
not changed because of its small proportion in 2016.
The rest of the areas was occupied by “crop” land.

Scale of Target Rainfall

To consider the impacts of climate change on flood
discharge, return periods for the rainfall from 2006 to
2016 (current rainfall) and from 2040 to 2050 (future
rainfall) were calculated. Return period is the average
length of time in years for an event, such as floods or
large rainfall, calculated using data from past events.
Return period (7) exceeding x, which is the expectation
value at the return period of 7, is expressed as:

1 1

T= 1 Fx,) Fx,)=1-— 2

T

where F(x,) is the occurrence probability of X not
exceeding x,,. The occurrence probability of X follows
a probability distribution function f(x).

Fle,) = [ f () 3)

In determining the best probability distribution
function f{x) for the current and future rainfall, six
probability distributions: (1) normal distribution; (2)
log-normal distribution; (3) Gumbel distribution; (4)
log-Gumbel distribution; (5) exponential distribution;
and (6) generalized pareto distribution, were plotted
against each yearly maximum rainfall. After that, each
plot was compared with the plotting position formula
for the goodness of fit tests. Standard Least-Square
Criterion (SLSC) was used to determine the best
probability distribution.

As one of the targets of current rainfall to examine
the impacts of climate change and land uses change on
flood discharge, a rainfall event in 2011 (122.4 mm/day)
that caused tremendous damage all over Thailand was
selected. Based on the probability distribution for current
rainfall, the return period X for a 122.4 mm/day rainfall
was calculated. Then, rainfall Y in future rainfall having
the same return period X was obtained as a target future
rainfall from the probability distribution of the future
rainfall.

Flood Discharge Simulation

For hydrological simulations, the Soil and Water
Assessment Tool (SWAT) model (Abbaspour et al.,
2015) was applied in this study. It is a continuous
time model that operates on a daily time step (Neitsch
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et al., 2011). SWAT uses spatially distributed data on
topography, soils and land uses to simulate daily flood
discharge against the input rainfall (Douglas-Mankin et
al., 2010). In its calculations, the watershed is divided
spatially into sub-watersheds, and further subdivided
into lumped, non-spatial hydrologic response units
(HRUs) having similar landscape characteristics. The
SWAT model has been used in a lot of studies, for
example, Abbaspour et al. (2015) used the SWAT
model to build a hydrological model of Europe at
the sub-basin level and monthly time intervals, while
Baker et al. (2013) analyzed whether the observed land
cover change within the River Njoro watershed can be
casually linked to hydrological alternations with the
SWAT model. In this study, maximum flood discharge
from target current and future rainfall were calculated.

To apply the SWAT model in the study area,
calibration with observed data in 2009 and validation
with observed data in 2010-11 were examined using
the land use map from 2010. In this calibration, SWAT-
CUP software (Abbaspour et al., 2007) was used to
find appropriate parameters to express the hydrological
responses in the target watershed. The Nash-Sutcliffe
(NS) coefficient was used as the criteria for the
goodness of fit tests. Figure 2 shows the calibration and
validation results. The NS coefficient was 0.80 and the
simulated discharge from the target rainfall in 2011 was
233.9 m%/s, which almost fit with the observed discharge
of 239.2 m*/s. Then, with the same parameters, another
validation was examined using the land use map from
2016 to verify that the SWAT model can simulate
discharge in any land use scenarios.

To obtain results considering the temporal distribution
of precipitation, some rainfall samples were created
by raising the amount of current and future rainfall.
Daily rainfall with 120, 140, 160, 180 and 200% of
the value of the target rainfall, (i.e., 122.4 mm/day
for current rainfall and ¥ mm/day for future rainfall)
were selected. Insufficient samples were obtained from
the lower raising rates (i.e., 120% and 140%), while
the larger raising rates (i.e., 180% and 200%) were
unrealistic. Therefore, in this study, raising rate of 160%
was applied. Then, all daily rainfall that satisfies that
condition was substituted into 122.4 mm/day in the
current rainfall period and into ¥ mm/day in the future
rainfall period. Then, SWAT calculated discharge from
these rainfall one by one. If there were more than two
daily rainfall in one year, the daily rainfall that caused
the maximum discharge was used for the simulation.

SWAT calculated the discharge from all rainfall
samples (current and future) with 14 land use patterns

(13 scenarios and the actual land use in 2016). All input
data for current (2006-16) was based on observation
and for future (2040-50) was from model calculation
as described above. For the predictions of impacts of
climate change on flood discharge, the Mann-Whitney
U test was used to examine the discharge from current
and future rainfall in the same land use patterns. The
antecedent precipitation index (API) was used for the
discussion, which is expressed as:

API= Y, a; xR’ (4)
i=1

where n is day, q; is coefficient and R’ is daily rainfall
i days before (mm/day). API for the 10, 20 and 30
days before the rainfall (i = 10, 20, 30) was calculated.
Finally, discharge from current and future rainfall in
different land use patterns were compared to predict
the impacts of climate change and land use changes.

Results and Discussion

Land Use Change Simulation

Figure 3 shows the results of the CLUEs model
simulating 13 land use scenarios in 2050. It was readily
apparent that the lower the proportion of forest areas, the
more crop lands expand. Forest areas found in the 8%
and 15% scenarios are located in the relatively higher
elevation areas, which isn’t suitable for agriculture.
Based on the effects of this initial location, “orchard”
may increase around lower elevation areas and near the
“others” in the 8-60% and BAU scenarios.

Return Period
Yearly maximum current rainfall follows log-Gumbel
distribution (blue line: SLSC = 0.022), while yearly
maximum future rainfall follows log-normal distribution
(red line: SLSC = 0.036). It is apparent that climate
change has an effect on changing rainfall patterns
(Figure 4). For yearly maximum future rainfall, the
variance becomes larger than for current rainfall, i.e.,
more extremely large and small rainfall events will tend
to occur during 2040-50 rather than during 2006-16.
From this result, the return period of 122.4 mm/
day rainfall in 2011 became 3.3 years under current
rainfall. Under future rainfall, yearly maximum rainfall
of the same return period, 3.3 years, was 125.8 mm/
day. To predict the impacts from larger yearly maximum
rainfall, the 10-year return period was also analyzed.
Yearly maximum current rainfall in the 10-year return
period was 176.4 mm/day, while yearly maximum future
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rainfall was 220.5 mm/day. The number of rainy days
that meet the condition are shown in Table 1.

Table 1: Rainfall days that meet condition and
rainfall samples for simulations

Return period 3.3 years 10 years
Current  Future Current Future

Ramfaﬂ that meets 17 6 9 4

condition

Rainfall samples 10 6 7 4

for simulations

Flood Discharge Simulation

Figure 5 shows the average discharge from the 3.3-
year return period rainfall by the SWAT model in the
14 land use patterns simulated by CLUEs. This result
indicates that the average discharge from future rainfall
(red line) was less than that from current rainfall in all
land use patterns. The Mann-Whitney U test shows
that the differences of average daily discharge between
current and future rainfall in all land use patterns met
the 5% significance level. However, Perera et al. (2013)
simulated the impacts of climate change on flood risk
in Nepal and concluded that significant increases in
the magnitude and frequency of high discharge were
indicated in the near future and future compared to
the present, which is the opposite of this result. The
simulation results were different between Nan Province
and Nepal because the impacts of climate change will
vary widely from region to region (Kundzewicz et
al., 2014). Therefore, it is important to analyze each
region. In Nan Province, it can be said that the impacts
of climate change will decrease the average discharge
in the 3.3-year return period rainfall. In addition, as
the proportion of forest areas decreases, it could be
seen that average daily discharge from both rainfall
was increasing. This result also can be seen in the
study of Wangpimool et al. (2013), which showed that
reforestation was useful in reducing the flow in the
upper-basin in Nan Province. This could be attributed to
the effects of forests mitigating the maximum discharge
by storing rainfall temporarily, and/or greater amounts
of evapotranspiration from the forest areas.

Similar to the previous results, there were two
tendencies. Firstly, although the comparisons of average
daily discharge from current rainfall with that from
future rainfall in the same land use patterns didn’t reach
the 5% significance level under the Mann-Whitney U
test, climate change reduced the average daily discharge.
Secondly, increases in discharge with decreasing areas

could be seen for the average daily discharge from the
10-year return period rainfall. In this case, additionally,
the differences between average daily discharge from
current and future rainfall were becoming smaller as
forest areas decreased. It is broadly held that forests
are more effective with smaller scale rainfall events and
have less power to mitigate floods during larger scale
rainfall events, which contradicts with this result. It
could be assumed that insufficient rainfall samples (four
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samples for future rainfall) was probably the reason for
this disparity. In order to analyze the reasons for the
lower average daily discharge from future rainfall than
from current rainfall, average APIs of 10, 20 and 30 days
before the 3.3 and 10-year return period rainfall were
compared in Figure 6. All average APIs from current
rainfall were larger than those from future rainfall.
These differences showed statistical significance for the
t-test at (P < 0.05 and P < 0.1 against the 3.3 and 10-
year return period rainfall, respectively). It is possible
that rainy days targeted for future rainfall might occur
during drier conditions, and this could cause lower
average daily discharge from future rainfall.

In addition, the reason why a 5% significance level
in the U test was not observed for the average daily
discharge in the 10-year return period rainfall could be
due to the differences between the amounts of rainfall.
The 10-year return period rainfall in the future was
44.1 mm larger than in the current situation, while the
3.3 years return period rainfall was only 3.4 mm larger.
These differences may close the gaps between average
daily discharge from current and future rainfall in the
10-year return period rainfall.

In predicting the impacts of climate change and land
use changes against the 3.3-year return period rainfall,
it was found that average daily discharge from future
rainfall in the 8% scenario (i.e., 205.1 m?/s) was less
than that from current rainfall in the 70% scenario (land
use in 2016) (i.e., 254.9 m?/s). This indicates that future
average daily discharge will not be above average daily
discharge in the current situation, even if the forest areas
are reduced to 8% in the watershed.

When viewed against the 10-year return period
rainfall, average daily discharge from current rainfall
in the 70% scenario (i.e., land use in 2016) was 403.5
m?/s, while that from future rainfall in the 45% scenario
was 410.1 m?/s, which indicates that average daily
discharge will be above that in the current situation. This
indicates that the impacts of climate change decreasing
average daily discharge will be counteracted by land use
changes if the forest area is reduced to less than 45%
in the watershed.

Conclusion

Multitier analysis considering climate change and
land use changes could quantitatively predict their
impacts on flood discharge. From the results, it could
be concluded that even if crop lands increase to 50%
of the target watershed, average daily discharge from
10-year return period future rainfall will not be larger

than that from current rainfall, and this can enable the
economic development in the region. Moreover, this
method can be applied to almost any locations as long
as some simple input data to run the CLUEs and SWAT
models are obtained.

Field work at the target watershed to ground truth
the actual land use would contribute to more accurate
simulations in the CLUEs model. Also, with longer
duration future meteorological data, the predictions of
impacts from larger return period rainfall (i.e., 15 years
and more) can be examined using the SWAT model.

One limitation of this study centres on the difficulties
in reflecting many factors. The combinations of CLUEs
and SWAT can integrate hydrology, atmospheric, forest
and land use factors, but other factors are also important
such as policy decision for the land use changes. Also,
the amount of discharge predicted in the results of
the SWAT model cannot be equalled to the scale of
the damage from floods. In order to do cost-benefit
performance analysis, the amount of discharge needs
to be transformed into the probable scale of damage.
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