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Abstract: One of the main challenges in the world is adaptation to the impacts of climate change, and it is 
important to understand which impacts will take place in each region. Thailand endures substantial damage from 
floods every year and needs accurate measurement to mitigate flood disaster predicted under the looming scenario 
of climate change. The predicted impacts of climate change on flood discharge need to consider land use changes 
in the future, especially in developing countries because of their vulnerabilities to economic growth. The objective 
of this study was the quantitative predictions of the impacts of climate change and land use changes on flood 
discharge, using two simulation models at one watershed in the Song Khwae District, Nan Province, Northern 
Thailand. This study has three steps: (1) predictions of future land uses (14 scenarios having different proportion 
of forest cover), (2) calculation of 3.3 and 10-year return period rainfall for the period of 2006-2016 and 2040-
2050, and (3) comparisons of average daily discharge from 3.3 and 10-year return period rainfall in 14 land use 
patterns. The results showed that although climate change will decrease the average daily discharge from the 3.3 
and 10-year return period rainfall, discharge from future rainfall that has a 10-year return period, where land use 
patterns limit forest areas to less than 45%, will be greater than present levels. These quantitative predictions can 
lead to cost-benefits performance analysis and contribute to positive adaptation to climate change.
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Introduction

Climate change is one of the biggest issues in the 
world today. The Intergovernmental Panel on Climate 
Change (IPCC) is warning the opposite risk, increasing 
flood discharge and food shortage caused by drought 
in the Asian region (Mach et al., 2014). Kundzewicz 
et al. (2014) also pointed out that the global impacts of 
climate change on flood discharge are not equal to the 
impacts at the local scales and necessitate knowledge 
of the future risk in each region. He further mentioned 
that predictions of the impacts of climate change on 

flood discharge at the basin scale are limited mostly 
in developed countries, such as in Europe and North 
America. In Japan, Wada et al. (2005) evaluated flood 
and drought risk that will be driven by changes in 
the rainfall pattern, which are one of the impacts of 
climate change. They revealed that in some regions, 
flood risk will increase, while in other regions, the risk 
of drought will be strengthened. As part of the efforts 
in developing countries, Perera et al. (2015) analyzed 
flood risk under climate change in Nepal. Their results 
showed increasing flood discharge, and a seasonal shift 
in its occurrences.

http://crossmark.crossref.org/dialog/?doi=10.3233%2FJCC190001&domain=pdf&date_stamp=2019-03-01
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To predict the impacts of climate change on flood 
discharge, an understanding of land use changes as a 
factor should also be considered. It is well known that 
forests have an ability to mitigate the maximum flood 
discharge by retaining excess rainwater. Therefore, 
forest lands and bare lands respond differently to 
heavy rainfall. Wolfersberger et al. (2015) described 
that developing countries preferentially tend to undergo 
significant land use changes in a short period. In 
addition to urbanization and population increases, 
Lambin et al. (2011) suggested that with the economic 
growth in developing countries, land uses in the 
countryside are affected because of increasing food 
export. It is predicted that land uses in local regions in 
developing countries will be different from their current 
states when the impacts of climate change occur. Thus, 
it is important to consider land use changes under the 
condition of climate change.

Thailand, one of the countries in the southeast Asia 
region, faces flood disaster during every rainy season 
(May to October). From August to December in 2011, 
an extensive flood disaster caused tremendous damage 
over much of Thailand, with 752 human fatalities 
(Komori et al., 2012). To mitigate flood disaster, 
the Thai government has been promoting forest 
conservation since the 1980s (Leblond, 2014) based 
on research results that show flood disaster at low 
elevation attributed to a loss of forests at high elevation 
area. Also, there are some projects ongoing in Thailand 
to identify adaptive methods to mitigate flood disaster 
under the condition of climate change. Some research 
has focused on the flood risk. For example, Amnatsan et 
al. (2009) assessed the flood risk under climate change 
in Nan Province, while Wangpimool et al. (2013) 
evaluated the impacts of land use changes on flood 
disaster. However, there are no studies that analyze the 
impacts of both climate change and land use changes.

The objective of this study was to quantitatively 
predict the impacts of climate change and land use 
changes on flood discharge, using two simulation 
models at one watershed in the Song Khwae District, 
Nan Province, Northern Thailand.

Materials and Methods

Study Area
The watershed in the Song Khwae District in Nan 
Province, northern Thailand was selected as the study 
area. As of 2016, in northern Thailand, 46% of the local 
population worked in the agricultural and fishery sectors 
(Thai National Statistical Office, 2016). Furthermore, 

crop yields are increasing because of improvements in 
agricultural techniques (Suzuki et al., 2014). The main 
crop in this region is maize, which is one of the five 
major crops (rice, sugar cane, cassava and oil palm and 
maize) in Thailand. For the most parts, double cropping 
systems with maize are dominant, with rainy season 
cropping and dry season cropping (November to April). 

In northern Thailand, Nan Province, especially, has 
a lot of agricultural land used for maize. The area of 
the province is 11,472.1 km2, and agricultural land 
accounts for 57%, which is the second largest crop area 
in northern Thailand. The areas under maize cultivation 
are more than twice that for sugar cane and cassava 
(Thai National Statistical Office, 2013). Because of 
the intensity of cultivation, a lot of forest lands has 
changed to crop lands, and bare lands can be seen after 
harvesting of the maize. 

Nan River, which has a channel length of 740 km 
and a watershed area of 13,130 km2 flows through 
the middle of the province. A tributary of the Nan 
River, which has 612 km2 watershed area and flows 
in the Song Khwae District, was selected as the target 
watershed for this research. This watershed also suffered 
extensive damage from floods in 2011. Discharge from 
the tributaries was observed by the Royal Irrigation 
Department, Thailand (RID). Land use data prepared by 
the Land Development Department (LDD) shows that 
the forest areas in this watershed increased from 2010 to 
2016. The significant potential for land use changes in 
the future and the limited missing data relative to other 
watersheds were the main reasons why this watershed 
was selected.

Data Sources
The GIS data used for running the land use simulation 
models, including the location of villages, rivers and 
roads, were obtained from the Japan International 
Cooperation Agency (JICA). The Digital Elevation 
Model (DEM) was downloaded from the United States 
Geological Survey (USGS). The soil map was acquired 
from the “Thailand on disk Soil View 2.0”, while the 
population map was acquired from East View Land 
Scan. The LDD provided land use data in raster map 
format for 2010 and 2016. All raster data was used in 
30 m horizontal and vertical resolution.

For rainfall and other meteorological data, the Thai 
Meteorological Department (TMD) supplied daily data 
of temperature (Celsius), relative humidity (%) and 
wind speed (m/s) data covering the period from April 
1, 1993, to March 31, 2016. As no organization had 
daily solar radiation data, observation of solar radiation  
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(MJ/m2) was conducted at Thung Chang from October 
16, 2016, to September 26, 2017. To align the period of 
data between solar radiation and others, observed solar 
radiation data from Chang Mai (Tanaka et al., 2008) 
was also utilized. Figure 1 shows the target watershed 
in the Nan Province and the locations of Nan River 
and observatories.

Daily rainfall data (mm) from April 1, 1993, to 
March 31, 2016 observed by RID at the Song Khwae 
observatory and daily discharge data (m3/s) at the N65 
observatory were used for the hydrological simulations. 
To predict the impacts of climate change on flood 
discharge, daily rainfall and other meteorological data 
for 2040–2050 generated by Watanabe et al. (2014) 
were used. Their data is created under the RCP4.5 
and RCP8.0 downscaling scenarios, and RCP4.5 was 
applied to this study due to the limitation of available 
data set for the predictions of impacts of climate change 
in RCP8.5 scenario.

Land Use Change Simulation
The Conversion of Land Use and its Effects at small 
regional extent (CLUEs) model was used in this study 
to simulate the future land use scenarios in the target 
watershed in 2050. This model was developed to 
simulate land use change using empirically quantified 
relationships between land uses and its driving factors 
(Veldkamp et al., 1996). In contrast to other land use 
simulation models, CLUEs can deal with multiple 
land use types simultaneously and can be applied at 
any scale, from continental level to sub-national level 
(Verburg et al., 2004). Zhang et al. (2016) adopted 
the CLUEs model to predict spatial distribution of 
green manures in crop lands and orchards in 2020 in 
the Pinggu District, Beijing, China. They developed 
two scenarios using CLUEs: Scenario 1: promotion of 
green manures spreading in orchards; and Scenario 2: 
promotion of simultaneous green manures planting in 
orchards and crop lands. Verburg et al. (2002) examined 
the accuracy of the CLUEs model in Sibuyan Island, 
the Philippines, and the Klang-Langat watershed in 
Malaysia. They concluded that CLUEs can easily be 
applied to wide range of study areas and land use change 
situations and pointed out that there are some limitations 
to simulating land use dynamics in areas without land 
use change history.

The CLUEs model predicts future land use scenarios 
based on four input data and one optional setting: 
(1) spatial policies and restrictions; (2) land use type 
specific conversion settings; (3) land use requirements; 
and (4) location characteristics for required input data, 

and neighbour settings for an optional setting. Land use 
conversions are expected with the highest “preference” 
for the specific type of land use at that moment in time. 
This “preference” is determined by a binomial logit 
model calculated following:

	 log
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where Pi is the occurrence probability of land use types 
on grid-cells i and independent variables (X) are the 
location factors, meaning biophysical or socio-economic 
characteristics of grid-cells i such as elevation and 
populaton etc. The coefficients (β) are estimated with 
a maximum likelihood estimation using the actual land  
use information. 

In this study, the validation of the CLUEs model was 
examined with the actual land use maps in 2010 and 
2016. Land use types in these two maps were classified 
as “forest”, “crop”, “orchard” and “others”. As location 
factors to obtain the logistic regression models, eight 
biophysical and socio-economic characteristics were 
applied: (1) population; (2) elevation; (3) slope; (4) 
aspect; (5) distance to city; (6) distance to village; (7) 
and (8) distance to road and to river. However, there 
were some areas where land use changes happened from 
2010 to 2016 that the logistic regression model could 
not express. But, these represented changes that could 
not be seen in the land use change history. Therefore, 
in this validation, land use change restrictions were 
applied, and those areas were designed as “no change 
will occur in this validation period”. Finally, in order to 
consider the effects of neighbourhood land use types, 
neighbour settings were used in this simulation. The 
validation results gave a kappa coefficient (κ) value of 
0.86 representing very good agreement, and precisions 
of each land use type: forest, crop, orchard, others, were 
0.96, 0.91, 0.68, and 0.98, respectively. These values 
indicate that the CLUEs model can be applied in this 
target watershed to predict future land use scenarios.

To consider the impacts of land use changes on flood 
discharge, 13 scenarios having different proportions of 
forest area were simulated. Based on the proportion of 
forest areas in 2016 (70%), its value was changed to 8, 
15, 20, 25, 30, 35, 40, 45, 50, 55, 60 and 80% in the 
simulated land use scenarios in 2050 (12 scenarios). In 
addition to them, a business as usual scenario (BAU 
scenario) was prepared. In the BAU scenario, land 
use changes from 2010 to 2016 were retained until 
2050 (75% forest area). The same logistic regressions 
with validation were used for all these simulations. No 
restricted areas were applied. In the simulations of the 
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12 scenarios, the areas of land use type “orchard” was 
increased by 200.25 ha each year, which is the same 
value as between 2010 and 2016, while “others” was 
not changed because of its small proportion in 2016. 
The rest of the areas was occupied by “crop” land.

Scale of Target Rainfall
To consider the impacts of climate change on flood 
discharge, return periods for the rainfall from 2006 to 
2016 (current rainfall) and from 2040 to 2050 (future 
rainfall) were calculated. Return period is the average 
length of time in years for an event, such as floods or 
large rainfall, calculated using data from past events. 
Return period (T) exceeding xp, which is the expectation 
value at the return period of T, is expressed as:

	 T =	
1

1
1 1

−
= −

F x
F x

Tp
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where F(xp) is the occurrence probability of X not 
exceeding xp. The occurrence probability of X follows 
a probability distribution function f (x).

	 F(xp) =	 f x dx
xp ( )
− ∞∫ 	 (3)

In determining the best probability distribution 
function f(x) for the current and future rainfall, six 
probability distributions: (1) normal distribution; (2) 
log-normal distribution; (3) Gumbel distribution; (4) 
log-Gumbel distribution; (5) exponential distribution; 
and (6) generalized pareto distribution, were plotted 
against each yearly maximum rainfall. After that, each 
plot was compared with the plotting position formula 
for the goodness of fit tests. Standard Least-Square 
Criterion (SLSC) was used to determine the best 
probability distribution.

As one of the targets of current rainfall to examine 
the impacts of climate change and land uses change on 
flood discharge, a rainfall event in 2011 (122.4 mm/day) 
that caused tremendous damage all over Thailand was 
selected. Based on the probability distribution for current 
rainfall, the return period X for a 122.4 mm/day rainfall 
was calculated. Then, rainfall Y in future rainfall having 
the same return period X was obtained as a target future 
rainfall from the probability distribution of the future 
rainfall.

Flood Discharge Simulation
For hydrological simulations, the Soil and Water 
Assessment Tool (SWAT) model (Abbaspour et al., 
2015) was applied in this study. It is a continuous 
time model that operates on a daily time step (Neitsch 

Figure 2: Results of calibration (2009) and validation 
(2010-11).

Figure 3: Results of CLUEs simulations.

Figure 1: DEM of target watershed in Nan Province, 
showing data points.
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et al., 2011). SWAT uses spatially distributed data on 
topography, soils and land uses to simulate daily flood 
discharge against the input rainfall (Douglas-Mankin et 
al., 2010). In its calculations, the watershed is divided 
spatially into sub-watersheds, and further subdivided 
into lumped, non-spatial hydrologic response units 
(HRUs) having similar landscape characteristics. The 
SWAT model has been used in a lot of studies, for 
example, Abbaspour et al. (2015) used the SWAT 
model to build a hydrological model of Europe at 
the sub-basin level and monthly time intervals, while 
Baker et al. (2013) analyzed whether the observed land 
cover change within the River Njoro watershed can be 
casually linked to hydrological alternations with the 
SWAT model. In this study, maximum flood discharge 
from target current and future rainfall were calculated.

To apply the SWAT model in the study area, 
calibration with observed data in 2009 and validation 
with observed data in 2010-11 were examined using 
the land use map from 2010. In this calibration, SWAT-
CUP software (Abbaspour et al., 2007) was used to 
find appropriate parameters to express the hydrological 
responses in the target watershed. The Nash-Sutcliffe 
(NS) coefficient was used as the criteria for the 
goodness of fit tests. Figure 2 shows the calibration and 
validation results. The NS coefficient was 0.80 and the 
simulated discharge from the target rainfall in 2011 was 
233.9 m3/s, which almost fit with the observed discharge 
of 239.2 m3/s. Then, with the same parameters, another 
validation was examined using the land use map from 
2016 to verify that the SWAT model can simulate 
discharge in any land use scenarios.

To obtain results considering the temporal distribution 
of precipitation, some rainfall samples were created 
by raising the amount of current and future rainfall. 
Daily rainfall with 120, 140, 160, 180 and 200% of 
the value of the target rainfall, (i.e., 122.4 mm/day 
for current rainfall and Y mm/day for future rainfall) 
were selected. Insufficient samples were obtained from 
the lower raising rates (i.e., 120% and 140%), while 
the larger raising rates (i.e., 180% and 200%) were 
unrealistic. Therefore, in this study, raising rate of 160% 
was applied. Then, all daily rainfall that satisfies that 
condition was substituted into 122.4 mm/day in the 
current rainfall period and into Y mm/day in the future 
rainfall period. Then, SWAT calculated discharge from 
these rainfall one by one. If there were more than two 
daily rainfall in one year, the daily rainfall that caused 
the maximum discharge was used for the simulation. 

SWAT calculated the discharge from all rainfall 
samples (current and future) with 14 land use patterns 

(13 scenarios and the actual land use in 2016). All input 
data for current (2006-16) was based on observation 
and for future (2040-50) was from model calculation 
as described above. For the predictions of impacts of 
climate change on flood discharge, the Mann-Whitney 
U test was used to examine the discharge from current 
and future rainfall in the same land use patterns. The 
antecedent precipitation index (API) was used for the 
discussion, which is expressed as:

	 API =	 a Ri
i

i

n
×

=
∑

1
	 (4)

where n is day, ai is coefficient and Ri is daily rainfall 
i days before (mm/day). API for the 10, 20 and 30 
days before the rainfall (i = 10, 20, 30) was calculated. 
Finally, discharge from current and future rainfall in 
different land use patterns were compared to predict 
the impacts of climate change and land use changes.

Results and Discussion

Land Use Change Simulation
Figure 3 shows the results of the CLUEs model 
simulating 13 land use scenarios in 2050. It was readily 
apparent that the lower the proportion of forest areas, the 
more crop lands expand. Forest areas found in the 8% 
and 15% scenarios are located in the relatively higher 
elevation areas, which isn’t suitable for agriculture. 
Based on the effects of this initial location, “orchard” 
may increase around lower elevation areas and near the 
“others” in the 8–60% and BAU scenarios.

Return Period
Yearly maximum current rainfall follows log-Gumbel 
distribution (blue line: SLSC = 0.022), while yearly 
maximum future rainfall follows log-normal distribution 
(red line: SLSC = 0.036). It is apparent that climate 
change has an effect on changing rainfall patterns 
(Figure 4). For yearly maximum future rainfall, the 
variance becomes larger than for current rainfall, i.e., 
more extremely large and small rainfall events will tend 
to occur during 2040–50 rather than during 2006–16.

From this result, the return period of 122.4 mm/
day rainfall in 2011 became 3.3 years under current 
rainfall. Under future rainfall, yearly maximum rainfall 
of the same return period, 3.3 years, was 125.8 mm/
day. To predict the impacts from larger yearly maximum 
rainfall, the 10-year return period was also analyzed. 
Yearly maximum current rainfall in the 10-year return 
period was 176.4 mm/day, while yearly maximum future 
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rainfall was 220.5 mm/day. The number of rainy days 
that meet the condition are shown in Table 1.

Table 1: Rainfall days that meet condition and  
rainfall samples for simulations

Return period 3.3 years 10 years
Current Future Current Future

Rainfall that meets 
condition 17 6 9 4

Rainfall samples 
for simulations 10 6 7 4

Flood Discharge Simulation
Figure 5 shows the average discharge from the 3.3-
year return period rainfall by the SWAT model in the 
14 land use patterns simulated by CLUEs. This result 
indicates that the average discharge from future rainfall 
(red line) was less than that from current rainfall in all 
land use patterns. The Mann-Whitney U test shows 
that the differences of average daily discharge between 
current and future rainfall in all land use patterns met 
the 5% significance level. However, Perera et al. (2013) 
simulated the impacts of climate change on flood risk 
in Nepal and concluded that significant increases in 
the magnitude and frequency of high discharge were 
indicated in the near future and future compared to 
the present, which is the opposite of this result. The 
simulation results were different between Nan Province 
and Nepal because the impacts of climate change will 
vary widely from region to region (Kundzewicz et 
al., 2014). Therefore, it is important to analyze each 
region. In Nan Province, it can be said that the impacts 
of climate change will decrease the average discharge 
in the 3.3-year return period rainfall. In addition, as 
the proportion of forest areas decreases, it could be 
seen that average daily discharge from both rainfall 
was increasing. This result also can be seen in the 
study of Wangpimool et al. (2013), which showed that 
reforestation was useful in reducing the flow in the 
upper-basin in Nan Province. This could be attributed to 
the effects of forests mitigating the maximum discharge 
by storing rainfall temporarily, and/or greater amounts 
of evapotranspiration from the forest areas.

Similar to the previous results, there were two 
tendencies. Firstly, although the comparisons of average 
daily discharge from current rainfall with that from 
future rainfall in the same land use patterns didn’t reach 
the 5% significance level under the Mann-Whitney U 
test, climate change reduced the average daily discharge. 
Secondly, increases in discharge with decreasing areas 

Figure 4: Return period of yearly maximum rainfall 
against current and future rainfall.

Figure 5: Results of SWAT simulations.

Figure 6: Plot of average APIs.

could be seen for the average daily discharge from the 
10-year return period rainfall. In this case, additionally, 
the differences between average daily discharge from 
current and future rainfall were becoming smaller as 
forest areas decreased. It is broadly held that forests 
are more effective with smaller scale rainfall events and 
have less power to mitigate floods during larger scale 
rainfall events, which contradicts with this result. It 
could be assumed that insufficient rainfall samples (four 
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samples for future rainfall) was probably the reason for 
this disparity. In order to analyze the reasons for the 
lower average daily discharge from future rainfall than 
from current rainfall, average APIs of 10, 20 and 30 days 
before the 3.3 and 10-year return period rainfall were 
compared in Figure 6. All average APIs from current 
rainfall were larger than those from future rainfall. 
These differences showed statistical significance for the 
t-test at (P < 0.05 and P < 0.1 against the 3.3 and 10-
year return period rainfall, respectively). It is possible 
that rainy days targeted for future rainfall might occur 
during drier conditions, and this could cause lower 
average daily discharge from future rainfall.

In addition, the reason why a 5% significance level 
in the U test was not observed for the average daily 
discharge in the 10-year return period rainfall could be 
due to the differences between the amounts of rainfall. 
The 10-year return period rainfall in the future was 
44.1 mm larger than in the current situation, while the 
3.3 years return period rainfall was only 3.4 mm larger. 
These differences may close the gaps between average 
daily discharge from current and future rainfall in the 
10-year return period rainfall.

In predicting the impacts of climate change and land 
use changes against the 3.3-year return period rainfall, 
it was found that average daily discharge from future 
rainfall in the 8% scenario (i.e., 205.1 m3/s) was less 
than that from current rainfall in the 70% scenario (land 
use in 2016) (i.e., 254.9 m3/s). This indicates that future 
average daily discharge will not be above average daily 
discharge in the current situation, even if the forest areas 
are reduced to 8% in the watershed.

When viewed against the 10-year return period 
rainfall, average daily discharge from current rainfall 
in the 70% scenario (i.e., land use in 2016) was 403.5 
m3/s, while that from future rainfall in the 45% scenario 
was 410.1 m3/s, which indicates that average daily 
discharge will be above that in the current situation. This 
indicates that the impacts of climate change decreasing 
average daily discharge will be counteracted by land use 
changes if the forest area is reduced to less than 45% 
in the watershed.

Conclusion

Multitier analysis considering climate change and 
land use changes could quantitatively predict their 
impacts on flood discharge. From the results, it could 
be concluded that even if crop lands increase to 50% 
of the target watershed, average daily discharge from 
10-year return period future rainfall will not be larger 

than that from current rainfall, and this can enable the 
economic development in the region. Moreover, this 
method can be applied to almost any locations as long 
as some simple input data to run the CLUEs and SWAT 
models are obtained.

Field work at the target watershed to ground truth 
the actual land use would contribute to more accurate 
simulations in the CLUEs model. Also, with longer 
duration future meteorological data, the predictions of 
impacts from larger return period rainfall (i.e., 15 years 
and more) can be examined using the SWAT model. 

One limitation of this study centres on the difficulties 
in reflecting many factors. The combinations of CLUEs 
and SWAT can integrate hydrology, atmospheric, forest 
and land use factors, but other factors are also important 
such as policy decision for the land use changes. Also, 
the amount of discharge predicted in the results of 
the SWAT model cannot be equalled to the scale of 
the damage from floods. In order to do cost-benefit 
performance analysis, the amount of discharge needs 
to be transformed into the probable scale of damage.
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