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Abstract: Modelling forest biomass sensitive to climate change is fulfilled at the levels as forest stands and single-
trees, but mostly on a local or regional level, often without regard to the age, morphology of the forest stands and
species composition. With this, it does not provide additive component composition, according to which the total
of biomass components (stems, branches, needles, and roots), obtained by component equations, would be equal
to the value of the biomass obtained by the general equation. The influence of climate change on the biomass
of a tree species in the format of additive models for transcontinental hydrothermal gradients has not yet been
studied. In the present study, the first attempt is made to model changes in the additive component composition
of the stand biomass and NPP of two-needled pines along Trans-Eurasian hydrothermal gradients. In the process
of modelling the database of pine stand biomass in a number of 2460 sample plots with the definitions of biomass
and 760 plots with the definitions of biomass and annual NPP compiled by the authors, is used.

Keywords: Two-needled pines, biosphere role of forests, forest biomass, allometric model, biological productivity,

additive biomass equations, mean January temperature, annual mean precipitation.

Introduction

At the United Nations climate summit in Paris in
December 2015, 196 countries committed themselves to
reducing CO, emissions and preventing annual average
temperatures from rising by more than 2°C by the end of
the century. Forest ecosystems, as sinks of atmospheric
carbon, play an important role in this perspective.
Global models examining the relationship between
atmospheric CO, concentration and air temperature
show that, by 2050, a decrease in atmospheric carbon
dioxide by 3.5-4 Gt/year will limit the temperature
rise to +1.5-2 °C (Meinshausen et al., 2009), i.e. to
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the threshold above which climate change will have
a significant negative impact on biota (IPCC, 2013).
This annual decrease of the concentration of CO, in
the atmosphere can be achieved, in particular, due to
the increase of carbon stock in vegetation cover during
effective forest management. On the other hand, climate
change has a significant impact on the carbon pool and
net primary production (NPP) of vegetation, which, in
turn, will affect the transformation of the matter cycling
and gas exchange in the biosphere (Golubyatnikov and
Denisenko, 2009).

In the present study, we make the first attempt to
model changes in the additive component composition
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of biomass and NPP of forest ecosystems by Trans-
Eurasian gradients of mean January temperatures and
mean annual precipitation on the example of two-
needled pines (subgenus Pinus sp.). In the development
of additive systems of equations, preference is given
to the principle “from general to particular”, in which
the equation for the total biomass is “splitted” into
additive equations for each component by the method
of proportional weighing (Dong et al., 2015).

Materials and Methods

From the database on the biomass and NPP of forests
of Eurasia (Usoltsev, 2013) the materials in the amount
of 2460 sample plots with the definitions of biomass
and 760 plots with the definitions of biomass and
annual NPP (t/ha) of phytocenoses of two-needled
pines (subgenus Pinus sp.) are taken, 86% of that are
represented by Scots pine (Pinus sylvestris L.) and in a
smaller number by P. tabuliformis Carr., P. densiflora S.
et Z., P. nigra Arn., P. pinaster Ait., P. pithyusa (Stev.)
Silba, and P. thunbergii Parl. Here we take in mind
namely phytocenoses, not stands, because we analyze
not only the tree stands, but the understorey too. Both
are considered in connection with the taxation indices
of tree stands.

Each sample plot, at which biomass of forest stands
was estimated, is positioned in accordance to mean
January temperature isolines (World Weather Maps,
2007) and to mean annual precipitation ones (http://
www.mapmost.com/world-precipitation-map/free-
world-precipitation-map/), and the initial data matrix is
compiled in which the values of biomass components
and of stand taxation characteristics are mated with
corresponding values of mean temperature and
precipitation. The matrix is included then into regression
analysis procedure. A schematic map of the isolines of
the mean January temperature was used, rather than
the mean annual temperature, since warming is most
pronounced in the cold half of the year (Golubyatnikov
and Denisenko, 2009; Laing and Binyamin, 2013).

A similar procedure was carried out for data on
biomass and NPP. Although data on the biomass
was three times more than the data on NPP, both are
distributed in Eurasian territory with approximately
the same density. The biomass data are analyzed in
connection with the age, tree density and stem volume
as the main mass-determining indices, as well as with
the main climatic variables. NPP data are analyzed in
connection with the same indices, as well as with the

harvest biomass data. General view of the model for
biomass:

InP, = £ {In4, (In4)?, InM, InN, In(Tm-+40), [In(Tm+40)]?,
InPRm, (InPRm)?%, [In(Tm+40)]-(InPRm)} (1)

and general view of the model for NPP:

InZ,=f {Ind, (In4)?, InM, InN, InP,, In(Tm+40),
[In(Tm+40)]%, InPRm, (InPRm)?, [In(Tm+40)]-
(InPRm)} )

where P; is biomass of i-th component, t/ha; Z,— annual
NPP of i-th component, t/ha; 4 — stand age, yrs; M —
stem volume, m3/ha; N — tree density, 1000/ha; i — index
of biomass component: all of the phytocenosis, which
includes wood storey and understorey (e), understorey,
including brushes, the undergrowth, and living grass
cover (u), total wood storey (t), aboveground wood
storey (a), underground wood storey, or roots (r), tree
crown (c), the stem above the bark (s), foliage (f),
branches (b), stem wood (w) and stem bark (bk); PRm
— mean annual precipitation, mm; 7m — mean January
temperature, °C. Because mean January temperature
in northern part of Eurasia has negative values,
corresponding independent variable is modified to the
form (7m+40). Equations (1) and (2) form a recursive
system in which the dependent variable of the first of
them is included in the second equation as one of the
independent variables.

In contrast to the three-step structure of the
disaggregation model of additive system of equations
(Dong et al., 2015) shown in Table I, in our study
the total biomass estimated from the initial equation
is subdivided into much more biomass component
according to the four-step scheme of proportional
weighting presented in Figure 1.
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Figure 1: The pattern of disaggregating three-step
proportional weighting additive model. Designation: Pe,
Pu, Pt, Pr, Pa, Pc, Ps, Pf, Pb, Pw and Pbk are stand biomass
respectively: total of the phytocenosis, understorey, total
wood storey, underground (roots), aboveground wood
storey, tree crown (needles and branches), stems above
bark (wood and bark), foliage, branches, stem wood and
stem bark correspondingly, t per ha.
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Table 1: The structure of the three-step additive model, implemented according to the principle of proportional
weighting according to the 122 trees of Larix gmelinii (Dong et al., 2015)
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Results The results of calculation (3) and (4) are given

The recursive system of the initial regression equations
(1) and (2) is calculated by their approximation
according to the harvest data using the common
regression analysis software. After correcting on
logarithmic transformation by Baskerville (1972)
and subsequent anti-log procedure, characteristics of
equations is given in Tables 2 and 3. All the regression
coefficients for numerical variables in equations (1) and
(2) are significant at the level of probability P45 or
higher, and the equations are adequate to harvest data.

The equations obtained are modified to additive form
according to the above mentioned algorithm (Table 1)
in the sequence shown in the scheme (see Figure 1),
and the final form of the transcontinental additive model
of component composition of biomass and NPP of pine
phytocenoses is shown in Tables 4 and 5 respectively.

When tabulating additive models (1) and (2), a
problem arises, which consists in the fact that we can
specify the indicators of only the forest stand age,
temperature and precipitation, but the values of the
stem volume and tree density can be entered into the
resulting table in the form of calculated values obtained
by a system of auxiliary recursive equations.

Such equations have a general form:

N = f[A, (Tm+40), PRm], 3)
M = f[A4, N, (Tm+40), PRm]. )

in Table 6. The results of tabulating the equations
in the sequence (3), (4), (1) and (2) present a rather
cumbersome table. We took from it the values of the
component composition of biomass and NPP of pine
forests for the age of 100 years and built graphs of
their dependence upon temperature and precipitation
(Figures 2 and 3).

Discussion

Looking at Figures 2 and 3, all the components of
biomass and NPP changes are of roughly the same
general pattern, but in different proportions. Common
to all the components regularity: in the cold zones
(Tm = -20°C) some precipitation increase leads to a
decrease of biomass and NPP, with the exception of
the understory, and in the warm ones (7m = 10°C)
to their increase, with the exception of the roots.
Correspondingly, in wet areas (PRm = 900 mm) some
increase of temperature causes an increase of biomass
and NPP, and in dry areas (PRm = 300 mm) it causes
their decrease, with the exception of the roots.

A similar general pattern was observed earlier at
the local level in the marsh forests of Siberia, where
at the maximum amounts of temperature sums above
10°C (2200°C) there is an increase in the radial growth
of stems by 30-50% with an increase in precipitation
from 400 to 600 mm, and at the minimum amounts of
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Figure 2: Dependence of pine phytocenoses biomass of Eurasia upon the average January temperature (7m) and
average annual precipitation (PRm). Designations: Pt, Pu, Pr, Ps, Pf and Pb are respectively biomass of: total wood
storey, understorey, underground storey (roots), stems (wood and bark), foliage and branches, t/ha.
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Figure 3: Dependence of pine phytocenoses NPP of Eurasia upon the average January temperature (7m) and average
annual precipitation (PRm). Designations see Figure 2.

temperature sums (1600°C) the radial growth is reduced
by 4-9% with an increase in precipitation in the same
range. Correspondingly, at the level of precipitation
of 400 mm the radial growth is reduced by 14-20%

with an increase in the sum of temperatures from 1600
to 2200°C, and it increases by 14-33% in the same
temperature range at the level of precipitation of 600
mm (Glebov and Litvinenko, 1976).
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In the mountains of southern Siberia the site index of
Siberian pine, fir, larch and Scots pine forests increases
from Va to I class when the temperature sum above
10°C rises from 400°C to 1600°C, and it decreases
from I to Va class when dryness index (after Budyko,
1984) changes from 1.0 to 0.2. More informative was
the correlation analysis of the site index with both
climatic factors simultaneously: “If in cold zones (the
sum of temperatures below 800°C) the thermic factor
is a determining the productivity level, since forest
productivity changes in the direction of change of
temperature sums, then in warm zones (the sum of
temperatures above 800°) the change of the site index
occurs along the gradient of the dryness index, which
confirms the leading role of the relative moisture factor”
(Polikarpov and Chebakova, 1982).

According to the results obtained by Molchanov
(1976), in the North of Eurasia the greatest influence on
the growth of the annual tree ring is the air temperature,
and in the conditions of the southern forest-steppe the
dominant role is played by precipitation.

Thus, our results on changes in the structure of
biomass and NPP of pine phytocenoses in two climatic
gradients mainly confirm the regularities previously
established by other researchers at the local and regional
levels.

Conclusions

This is the first attempt of modelling changes in additive
component composition of biomass and net primary
production (NPP) of plant communities two-needled
pines on the Trans-Eurasian hydrothermal gradients
based on regional peculiarities of age and morphology
of the forests. Cold climatic zones precipitation increase
leads to a decrease in biomass and NPP, and in warm
ones its increase. Similarly in wet areas increase of
temperature causes an increase of biomass and NPP
compared to dry areas. The deviations from the
mentioned general pattern are observed in the biomass
and NPP of roots. The developed models for basic forest
species grown in Eurasia thus gives possibility to predict
changes in the biological productivity of Eurasian forest
in the climate change scenarios.
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