

Journal of Climate Change, Vol. 5, No. 1 (2019), pp. 51-60. DOI 10.3233/JCC190006

Effects of Climate Variation in Microbial Community: A Current Scenario on Tropical Southern Indian Coastal Zone

Sivanandham Vignesh¹, Santhaseelan Henciya¹, Krishnan Muthukumar², Murugaiah Santhosh Gokul¹, Thasu Dinakaran Vengateshwaran¹, Hans-Uwe Dahms³ and Rathinam Arthur James^{1*}

¹Department of Marine Science, Bharathidasan University, Tiruchirappalli − 620024, India ²Department of Physics, National Institute of Technology, Tiruchirappalli − 620015, India ³Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan, R.O.C. and Department of Marine Biotechnology and Resources, National Sun Yat-sen University No. 70, Lienhai Road, Kaohsiung 80424, Taiwan, R.O.C.

Received October 14, 2018; revised and accepted November 28, 2018

Abstract: The physicochemical parameters of the coastal water at eight different locations of Palk Strait were studied and the temperature have been taken as a significant parameter to predict the biomass of the phytoplankton and bacterial community in the summer and the monsoon seasons. The bacterial population was higher with the total dissolved solids (TDS) value in the bottom water of Rameshwaram with availability of Total viable count (TVC) – 5500,000 CFU/mL; Fecal coliforms (FC) – 7500 CFU/mL and Fecal *Streptococci* (FS) – 1630 CFU/mL. The highest pollution index (PI) observed in the same region at the PI range is 4.60 during summer season. On the contrary, monsoon season shows less bioavailability of phytoplankton than other parameters in the same region. Bacterial population was found higher at the monsoon season as 7200,000 CFU/mL due to mixing of nutrients from the fresh water inputs. The highest availability of nutrients and moderate temperature have considerable effects in this study. The one-way ANOVA analysis of the locationwise study shows the statistical significance with all the parameters with exception of few including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), FS and FC at the surface water.

Keywords: Palk Strait; Temperature; Phytoplankton; Microbial populations; Climate change.

Introduction

Typically coastal water is more dynamic towards the climate change and the unexpected seasonal fluctuation as a temporal indication. Several substantial factors have been continuously changing due to this mutable situation (Zikra et al., 2015) such as physicochemical

and other biological factors including the diversity of micro and macro organisms. Sometimes the changes will be the origin of creating a new living environment and hence the organism have to face some stress due to the sudden interruption. Physicochemical changes in coastal waters do not occur independently but are linked with each other (Iyer et al., 2003). Accordingly,

temperature is one of the significant factors which plays a key role for regulating all metabolic process in the entire biological organization. Commonly, warming of seawater affects all stages of organisms, due to the influence of temperature, the sensitivity of organisms from the autotrophic to heterotrophic, which have to move in the stability between primary production and re-mineralization of organic matter probably like biogeochemical cycling in the ocean. During growth of autotrophs, phytoplanktons show lower sensitivity towards temperature than heterophic organisms (Chen et al., 2015) such as bacterial progression and other grazer of herbivorous unless the temperature reaches beyond 18 °C (Schabhüttl et al., 2013).

However there is a long term measurement for the temperature variations in the continental shelf regions which are not well represented yet, due to the limitation of the surface area compared with the largest sea surface and insufficient monitoring. With this point of view, the southern coastal regions of Tamilnadu has a length of about 1076 kms (Environmental Information System (ENVIS); (Ramesh et al., 2008; Vignesh, 2012a) which constitutes about 15% of the total coastal length of India. Generally the maximum temperature of Tamilnadu rarely exceeds 43 °C and the minimum temperature exceptionally downs below 18 °C (Action Plan, Government of Tamilnadu, 2013). Palk bay is the significant area, that reclaim more anthropogenic activity due to fishing and intermingled human activities. Reflections of biotic and abiotic factors towards the seasonal variations in that region, especially on temperate are needed to be focussed. Understanding the basic biological organization of the organisms such as phytoplankton as a primary producer and the bacterial (TVC, FC and FS) population as a heterotrophs at different seasons such as summer and monsoon are essential to get an overall view of the understanding. The current research focussed on analysis of seasonal temperature variations in the Palk Strait regions of southern Indian coastal zone and its consequent effect on physicochemical and biological components.

Materials and Methods

Study Area

The Palk Strait/Palk bay is bound in between the Point Calimere and Rameshwaram Island as northern and southern borders, respectively. The Palk Strait has approximately 150 km long stretch along the Bay of Bengal coast and an enormous living and non-living marine organisms are witnessed here. Fishing and

aquaculture activities are practised on a small and large scale level with few lakhs of fishermen depending on the ocean for their livelihood. The mangrove plants are artificially transplanted in these regions to improve the marine resources and tsunami prevention. The sampling seasons fall into four groups: post monsoon (January-February), summer (March-May), pre monsoon (June-August), and monsoon (September-December) (Vignesh et al., 2014).

Sampling

The sampling locations are as follows: Kodiyakkarai (S1), Adirampattinam (S2), Manamelkudi (S3), Mimisel (S4), Thondi (S5), Devipattinam (S6), Mandapam (S7) and Rameswaram (S8) (Figure 1). The sampling locations were demarcated by using a geographical positioning system (GPS) (Garmin GPS 60). The surface and bottom sea water (One km distance from shore line) from eight locations in Palk Strait regions at Tamilnadu coastal zone were collected during summer and monsoon 2017. Nearly 2000 mL of surface (0-20 cm below the surface) and bottom sea water was collected with a cleaned Niskin water sampler at each location. Physicochemical parameters i.e., temperature (T°), pH, electrical conductivity (EC), total dissolved solids (TDS), and salinity were measured using a field kit (EUTECH - PCS Testr 35 Multi Meter) at each sampling site. All samples were kept in iceboxes and processed within 15 h of collection (Vignesh et al., 2016, 2018). The phytoplankton samples were collected from the surface water in two different seasons using a plankton net with 0.35 µm mouth diameter and 10 number mesh size by towing it at eight different coastal locations of Palk Strait (Mohapatra and Patra, 2012).

Physicochemical, Bacteriological and Phytoplankton Analysis

Physicochemical parameters like salinity and DO were studied in laboratory by using standard procedure (Vignesh et al., 2014, 2016). The marine bacterial populations [Total viable count (TVC), Fecal coliforms (FC) and Fecal *Streptococci* (FS)] from surface and bottom sea water were analyzed by the pure culture technique (spread plating method) on nutrient agar plates. Then, the TVC and FS plates were incubated at 37 ± 1 °C for 24 to 48 h. All the trials were performed triplicate and the average final counts of colonies were noted. The bacterial colonies were partially identified through Rapid Microbial Limit Test kits (Vignesh et al., 2012b, 2015; Muthukumar et al., 2017). The culture media and McFarland standards were obtained from Hi-

Media Pvt. Ltd., Bombay, India and the culture media were prepared by sterile aged sea water.

The phytoplankton samples were preserved in one litre sterile container by adding 3% of Lucol's Iodine for quantification studies. Then the samples were allowed for settlement for 24-48 hrs followed by siphoning out. Quantification of phytoplankton have been performed by taking 1 mL of siphon-out sample by placing it into the Sedgwick chamber under the inverted Epi-fluorsescence microscope by 10× and 40× magnification for counting and identification using standard taxonomic keys and the counted cells were calculated according to squares of Sedgwick chamber. The descriptive statistics and one-way analysis of variance (ANOVA) was performed by using the statistical package ORIGIN8.0 (Vignesh et al., 2014, 2015, 2016).

Results and Discussion

In this study, the maximum temperature was found to be at 33 °C in summer at Adirampattinam and Thondi among all stations. The bottom water of all the stations have very few variations in temperature than the surface water with 2 to 3 °C. Temperature is the significant parameter in the aquatic system which influences the biological and physicochemical parameters of the organisms (Sukumaran et al., 2013). The physicochemical parameters are not only influenced by other parameters and also some other factors causing the changes within the system (Vignesh et al., 2016).

The pH and EC were not much more different among all the stations (Figures 2 and 3). Ultimately among all other parameters, the total dissolved solids (TDS) have been found higher in the bottom water of Manamelkudi as 39,242.5 mg/L, similarly the salinity was also found to be higher 34.15 ppt, followed by Rameshwaram as 39,046.80 mg/L with same salinity value. Salinity also is one of the significant parameters, that can be credited for plankton diversity for the distribution of its community (Balasubramanian and Kannan, 2005; Sridhar et al., 2006). Interestingly Devipattinam coastal region witnessed the highest level of dissolved oxygen (DO) as the considerable limit of 6.85 mg/L in the bottom water than the surface water with minor value at the bottom (5.84 mg/L).

In this study the bacterial populations are more vibrant towards the TDS value with the bottom water of Rameshwaram with availability of total viable count (TVC) – 5500,000 CFU/mL, FC - 7500 CFU/mL and FS – 1630 CFU/mL. The highest pollution index was also noted in the same region,

as the PI range in 4.60 (Figure 4). The maximum bacterial counts indicate towards human activities at Rameshwaram coasts which is differing from the findings of Bharathi et al. (2018) at Ennore coastal waters region which means the bacterial population has positive correlation with BOD. In our study the optimal DO level is contributing the survivalist of TVC. The surface and the bottom water of Rameshwaram show similar efforts towards the physicochemical factors. Changes in the physicochemical parameters also can influence the abundance of phytoplankton (Rajkumar et al., 2009; Nowrouzi and Valavi, 2011). The population density of phytoplankton was highest at the Rameshwaram surface water as 85,500 cells/L due to the abundant range of DO that could be a projecting factor for this bioavailability, with observed temperature of 32.2 °C.

The occurrence of phytoplanktons highly depends upon the nutrient availability of the region and hence the TDS level significantly indicates the availability of nutrients with highest phytoplankton diversity. This was highly supportive from the findings of Vajravelu et al. (2018). Mimisel is the second most observed region that indicates the bioavailability of phytoplankton at the temperature range at 32.6 °C with 81,000 cells/L with the level of DO at 5.79 mg/L. The temperature of Kodiyakkarai was lower than the others as 26.48 °C and the considerable abundance of phytoplankton was also noticed as 74,500 cells/L with the value of DO at 5.55 mg/L. The range of 33.18 °C in Thondi also indicates the second most population of TVC, FC and FS like 2860,000 CFU/mL, 3200 CFU/mL and 1040 CFU/mL whereas bottom water has the highest value than the surface like 3400,000 CFU/mL, 3800 CFU/mL and 1220 CFU/mL. The pollution index (PI) indicates greater than 1 which proved the sampling sites were polluted by human excretions (Vignesh et al., 2012b).

The lowest DO was found at Adirampattinam as 5.42 mg/L in the surface water and the little abundance of phytoplankton was observed as 61,458 cells/L. Commonly in the nutrient-supplied coastal zones, temperature and salinity will affect the assimilation of nutrients and highly influencing the growth of biomass production (Kaur-Kahlon et al., 2016) and microbial community; our study directly support this statement with the evidence of highest availability of nutrients and temperature at the Rameshwaram (TDS 34,876.5 mg/L and Salinity 32.94 ppt) coasts with highest TVC in surface and the bottom water. Similar results have been reported by Vignesh et al. (2014) in Tamilnadu coast.

According to all observations, the highest

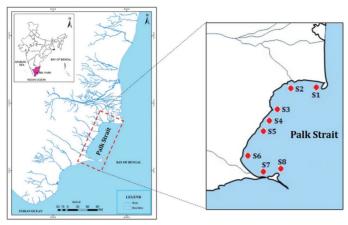


Figure 1: Sampling sites in study area.

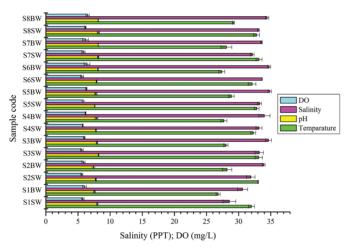


Figure 2: Variations of temperature, pH, Salinity and dissolved oxygen in surface and bottom water of Palk Strait

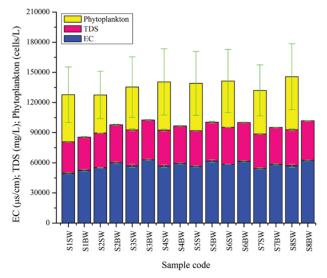


Figure 3: Variations of electrical conductivity and total dissolved solids level in surface and bottom water of Palk Strait.

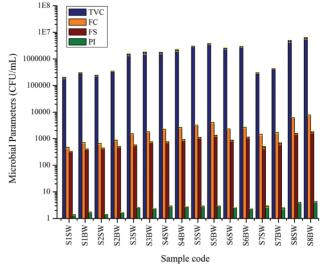


Figure 4: Spatial distribution of microbial parameters and pollution index in surface and bottom water of Palk Strait.

temperature and salinity strongly influence the growth of phytoplankton and the bacterial biomass directly, that is probably linked with the observation of Kaur-Kahlon et al. (2016) whose investigation strongly states that the plankton biomass had a substantial straight optimistic influence on the bacterial abundance with highest temperature value. In monsoon season the temperature was not altered much and the maximum temperature was found to be 33.67 °C, 33.64 °C and 33.24 °C at Manamelkudi, Mandapam and Rameswaram sites. The TDS was also changed in the above sites as 36.974.1 mg/L, 34.678.2 mg/L and 36.942.6 mg/L in the surface water and minor changes in the bottom water region. The bacterial load in the monsoon season of the Rameshwaram area show higher in TVC, FC and FS value than the summer in the bottom and surface water as follows 7200,000 CFU/mL, 8100 CFU/mL, 2010 CFU/mL and surface 5700,000 CFU/mL, 6500 CFU/mL and 1730 CFU/mL.

Generally the bacterial population was found to be higher during monsoon season due to the mixing of high nutrients from the fresh water inputs which is strongly correlated with earlier study (Meera, 2016) at Palk Bay. Additionally the level of DO was higher in the Rameshwaram site as 6.25 mg/L in the surface water with the highest population of phytoplankton (20,000 cell/L) in the monsoon compared to summer value as the monsoon diversity was highly reduced. But the higher concentration of DO during monsoon credited more input of fresh water into the system that was evidenced for the highest bioavailability of phytoplankton at this season (Morgan et al., 2006). Mandapam region pronounced the second most diversity

of phytoplankton with 18,000 cells/L with less bacterial diversity as 320,000 CFU/mL, 1580 CFU/mL and 600 CFU/mL in surface and bottom water having 450,000 CFU/mL, 1840 CFU/mL and 820 CFU/mL. Moderate level of phytoplankton diversity was found at Mimisel and Thondi as 15,000 cells/L and 15,360 cells/L in the surface sample and the bacterial diversity was in the record as 2030,000 CFU/mL, 2410 CFU/mL and 850 CFU/mL of TVC, FS and FC with the temperature of 31.89 °C and 32.45 °C.

As per the descriptive statistical analysis, the mean, standard deviation, standard error, lower 95% CI of mean, upper 95% CI of mean, variance, skewness, kurtosis, coefficient of variation, mean absolute deviation, geometric mean, geometric standard deviation, mode, median value, minimum value and maximum value of temperature, TVC and phytoplankton were 30.35, 2039,530 and 45,572.06; 2.48, 1832,740 and 30,932.84; 0.44, 323,985.76 and 7,733.21; 29.45, 1378,760.00 and 29,089.12; 31.24, 2700,300.00 and 62,055.01; 6.13, 335,894.0000000 and 956841000; -0.10, 1.05 and 0.08; -1.71, 0.80 and -2.15; 0.08, 0.90 and 0.68; 2.31, 1440,410 and 29,482.31; 30.25, 1196,560 and 34,469.02; 1.09, 3.22 and 2.25; 28.94 and 320,000, 30.42, 1840,000 and 40,729; 26.48, 176,000 and 12,500 and 33.67, 7200,000 and 85,500 (Table 1) The one-way ANOVA analysis indicated that the location-wise study is statistically significant with all the parameters (except T, pH, EC, TDS, salinity, TVC, FC, FS and PI of the surface water) while the location-wise pattern is statistically not significant with all parameters. In addition, the fit statistics showed the R^2 value and its confirmation relationship between the parameters in both season and location-wise manner (Tables 2 and 3).

The lowest bacterial population was found at the temperature 32.45 °C and 32.98 °C in Kodiyakkarai and Adirampattinam with the moderate population of phytoplankton observed as 19,148 cells/L and 14,210 cells/L (Figure 3, Table 4). The lowest abundance of phytoplankton was viewed as 12,500 cells/L in Manelmelkudi at 33.67 °C that could be due to the heavy rain fall, low level of salinity and higher pH (Rajasekar et al., 2010; Babu et al., 2013). Decreasing temperature could be ascribed for receiving more rainfall at monsoon season; the previous reports also state that the record of lowest temperature in water is highly depends upon the previous rainfall status of the aquatic system. Seasonal variations in temperature could ascribe with the force of wind, influx of fresh water and atmospheric

temperature. In our study, the population density of phytoplankton was higher at the summer season than the monsoon when the temperature and the salinity values were high (Gieskes et al., 1984; Varadharajan and Soundarapandian et al., 2015). The population of phytoplankton at the summer season was mostly interrelated with observation of Thirunavukkarasu et al. (2013). Since the phytoplanktons are frequently available at the surface uppermost layer to receive the light energy for the photosynthesis, the reactiveness of light energy has various limitation factors such as the absorption by water, wavelength of light, turbidity and dissolved solid availability.

Conclusion

The present study shows the temperature in surface and bottom marine water recorded between 26 and 34 °C. As per the current study and earlier records, the temperature limits (26-34 °C) are strongly influencing the growth of phytoplankton and the bacterial biomass, which directly supports the biodiversity. Our findings show the population density of phytoplankton is higher at Rameshwaram surface water as 85,500 cells/L due to the abundance of DO that could be a projecting factor for this bioavailability, and the temperature was noted as 32.34 °C. Whereas the temperature at Kodiyakkarai reveals lower than others as 26.48 °C and the lower phytoplankton counts (74,500 cells/L). The bacterial load in the monsoon season of Rameshwaram area marked higher TVC, FC and FS values than the summer in the bottom and the surface water as 7200,000 CFU/ mL, 8100 CFU/mL and 2010 CFU/mL (bottom water); and 5700,000 CFU/mL, 6500 CFU/mL and 1730 CFU/ mL (surface water). Hence we concluded that, the observed temperature supports the microbial growth, but while crossing the limits, it may affect the microbial biomass.

Acknowledgements

The authors would like to thank Bharathidasan University authorities for carrying out this research. One of the author, Muthukumar Krishnan, wishes to thank the Department of Science and Technology, Science Engineering Research Board (DST-SERB), New Delhi, India for awarding the National Postdoctoral Fellowship (PDF/2017/002213).

Table 1: Descriptive statistics of physiochemical, microbiological and phytoplankton parameters

Parameters Mean	Mean	QS	SE	Lower 95% Upper 95%	Upper 95%	Variance	Skew ness	Kur tosis	AD	МАД	Geo Mean	Geo SD	Mode	Min	Med	Мах
Γ	30.35	2.48	0.44	29.45	31.24	6.13	-0.10	-1.71	80.0	2.31	30.25	1.09	28.94	26.48	30.42	33.67
Hd	7.90	0.26	0.05	7.81	8.00	0.07	-0.38	-0.90	0.03	0.22	7.90	1.03	7.58	7.41	7.94	8.34
EC	57715.20	3764.23	665.43	56358.05	59072.35	14169400.00	-0.45	-0.28	0.07	3049.44	57593.56	1.07	1	48954.44	58485.24	63686.51
TDS	36360.58	2371.46	419.22	35505.57	37215.58	5623840.00	-0.45	-0.28	0.07	1921.15	36283.95	1.07	1	30841.30	36845.70	40122.50
Salinity	33.10	1.71	0.30	32.49	33.72	2.94	-1.53	2.75	0.05	1.24	33.06	1.06	32.94	27.54	33.60	35.12
DO	5.96	0.37	0.07	5.83	60.9	0.14	0.56	0.05	90.0	0.30	5.95	1.06	6.10	5.37	5.89	6.85
TVC	2039530.00	2039530.00 1832740.00 323985.76		1378760.00	2700300.00	3358940000000.00	1.05	0.80	06.0	1440410.00	1196560.00	3.22	320000.00	176000.00	1840000.00	7200000.00
FC	2539.06	2007.91	354.95	1815.13	3262.99	4031720.00	1.49	1.72	62.0	1453.71	1913.47	2.18	:	430.00	2010.00	8100.00
FS	865.31	438.02	77.43	707.39	1023.24	191864.42	06.0	0.20	0.51	349.77	767.11	1.65	410.00	320.00	815.00	2010.00
PI	2.62	0.82	0.14	2.32	2.91	0.67	0.50	0.21	0.31	0.61	2.49	1.38	1	1.34	2.63	4.60
Phy	45572.06	30932.84	7733.21	29089.12	62055.01	956841000.00	80.0	-2.15	89.0	29482.31	34469.02	2.25	:	12500.00	40729.00	85500.00

T° – Temperature; Phy – Phytoplankton; SD – Standard deviation; SE – Standard error of mean; Lower 95% – Lower 95% CI of mean; Upper 95% – Upper 95% CI of mean; CV – Coefficient of variation; MAD – Mean absolute deviation; Geo Mean – Geometric mean; Geo SD – Geometric standard deviation; Min – Minimum; Med – Median; Max – Maximum

Table 2: Season-wise one way ANOVA of physicochemical, microbial and phytoplankton parameters

Parameters				Stati	stical studies	tical studies			
		One	Way ANOVA			Fit St	atistics		
	Details	DF	Sum of Squares	Mean Square	R-Square	Coeff Var	Root MSE	Data Mean	
Temperature	Model	1	0.0399	0.0399	2.10E-04	0.0829	2.51574	30.34531	
	Error	30	189.86769	6.32892					
	Total	31	189.9076						
pН	Model	1	0.003	0.003	0.00144	0.03337	0.26381	7.90469	
	Error	30	2.08779	0.06959					
	Total	31	2.0908						
EC	Model	1	2.07E+07	2.07E+07	0.04715	0.06472	3735.147	57715.2	
	Error	30	4.19E+08	1.40E+07					
	Total	31	4.39E+08						
TDS	Model	1	8.22E+06	8.22E+06	0.04715	0.06472	2353.142	36360.58	
	Error	30	1.66E+08	5.54E+06					
	Total	31	1.74E+08						
Salinity	Model	1	5.81405	5.81405	0.06387	0.05091	1.68541	33.10437	
	Error	30	85.21834	2.84061					
	Total	31	91.03239						
DO	Model	1	0.14091	0.14091	0.03277	0.06247	0.37234	5.95989	
	Error	30	4.15911	0.13864					
	Total	31	4.30002						
TVC	Model	1	1.92E+12	1.92E+12	0.01841	0.90501	1.85E+06	2.04E+06	
	Error	30	1.02E+14	3.41E+12					
	Total	31	1.04E+14						
FC	Model	1	613278.1	613278.1	0.00491	0.80191	2036.091	2539.063	
	Error	30	1.24E+08	4.15E+06					
	Total	31	1.25E+08						
FS	Model	1	206403.1	206403.1	0.0347	0.50556	437.4698	865.3125	
	Error	30	5.74E+06	191379.8					
	Total	31	5.95E+06						
PI	Model	1	0.26055	0.26055	0.01261	0.31498	0.82471	2.61827	
	Error	30	20.40439	0.68015	0.01201	3.51170	0.021/1	2.01027	
	Total	31	20.66494						
Phytoplankton	Model	1	1.39E+10	1.39E+10	0.96897	0.12376	5639.784	45572.06	
i iiy topiankton	Error	14	4.45E+08	3.18E+07	0.70097	0.123/0	5057.10 1	755/2.00	
	Total	15	1.44E+10	5.101.07					

Table 3: Location-wise one way ANOVA of physicochemical, microbial and phytoplankton parameters

Parameters				Statistic	cal studies			
	One Way ANOVA			Fit Statistics				
	Details	DF	Sum of Squares	Mean Square	R-Square	Coeff Var	Root MSE	Data Mean
Temperature	Model	15	182.45335	12.16356	0.96075	0.02249	0.68256	30.34531
	Error	16	7.45425	0.46589				
	Total	31	189.9076					
pН	Model	15	1.72085	0.11472	0.82306	0.01924	0.15206	7.90469
	Error	16	0.36995	0.02312				
	Total	31	2.0908					
EC	Model	15	4.07E+08	2.71E+07	0.92546	0.02479	1430.535	57715.2
	Error	16	3.27E+07	2.05E+06				
	Total	31	4.39E+08					
TDS	Model	15	1.61E+08	1.08E+07	0.92546	0.02479	901.2368	36360.58
	Error	16	1.30E+07	812227.8				
	Total	31	1.74E+08					
Salinity	Model	15	82.61089	5.50739	0.90749	0.02192	0.7255	33.10437
	Error	16	8.4215	0.52634				
	Total	31	91.03239					
DO	Model	15	2.48219	0.16548	0.57725	0.05656	0.33707	5.95989
	Error	16	1.81783	0.11361				
	Total	31	4.30002					
TVC	Model	15	1.00E+14	6.68E+12	0.962	0.24382	497278.1	2.04E+06
	Error	16	3.96E+12	2.47E+11				
	Total	31	1.04E+14					
FC	Model	15	1.24E+08	8.28E+06	0.99373	0.08716	221.31	2539.063
	Error	16	783650	48978.13				
	Total	31	1.25E+08					
FS	Model	15	5.67E+06	377929.8	0.95312	0.15256	132.0156	865.3125
	Error	16	278850	17428.13				
	Total	31	5.95E+06					
PI	Model	15	19.90444	1.32696	0.9632	0.08327	0.21802	2.61827
	Error	16	0.7605	0.04753				
	Total	31	20.66494					
Phytoplankton	Model	15	2.70E+08	1.80E+07	0.01884			45572.06
	Error	0	1.41E+10					
	Total	15	1.44E+10					

Table 4:	Species	abundances	of	phytoplankton	in
		Palk Strai	it		

Group/Genus	Summer	Monsoon
Coscinodiscus sp	+	+
Fragilaria sp	-	+
Thalassionema sp	+	-
Ceratium sp	+	+
Peridinium sp	-	+
Skeletonema sp	+	+
Nitzschia sp	+	+
Prorocentram sp	+	-
Oscillatoria sp	+	-

References

- Babu, D. Varadharajan, Vengadesh, P.N., Thilagavathi, B., Manikandarajan, T., Sampathkumar, P. and Balasubramanian, T., 2013. Diversity of phytoplankton in different stations from Muthupettai, South east coast of India. *Mar. Sci. Res. Dev.*, **3(3):** 10.4172/2155-9910.1000128.
- Bingzhang Chen, 2015. Patterns of thermal limits of phytoplankton. *J. Plankton Res.*, **37(2)**: 285–292. doi:10.1093/plankt/fbv009
- Gieskes, W.W.C. and Kraay, G.W., 1984. Phytoplankton, Its Pigments and Primary Production at a Central North Sea Station in May, July and September 1981. *Netherland J. Sea Res.*, **18:** 51–70.
- Gurpreet Kaur-Kahlon, Sanjeev Kumar, Ann-Sofi Rehnstam-Holm, Ashwin Rai, Bhavya, P.S., Lars Edler, Arvind Singh, Björn Andersson, Indrani Karunasagar, Rengaswamy Ramesh and Anna Godhel, 2016. Response of a coastal tropical pelagic microbial community to changing salinity and temperature. *Aquatic Microbial Ecology*, **77:** 37–50.
- Iyer, C.S., Sindhu, M., Kulkarni, S.G., Tambe, S.S. and Kulkarni, B.D., 2003. Statistical analysis of the physico-chemical data on the coastal waters of Cochin. *J. Environ. Monit.*, **5(2):** 324–327.
- Meera, B., 2016. Prevalence of pollution indicators in Palk Bay coastal zone, Southern India. *International Journal of Advances in Scientific Research*, **2(01)**: 27–31.
- Morgan, A.M., Royer, T.V., David, M.B. and Gentry, L.E., 2006. Relationships among nutrients, chlorophyll-*a*, and dissolved oxygen in agricultural streams in Illinois. *J. Environ. Qual.*, **35:** 1110–1117, 10.2134/jeq2005.0433.
- Muhammad Zikraa, Suntoyoa and Lukijanto, 2015. Climate change impacts on Indonesian coastal areas. *Procedia Earth and Planetary Science*, **14:** 57–63.
- Nowrouzi, S. and Valavi, H., 2011. Effects of environmental factors on phytoplankton abundance and diversity in kaftar lake. *J. Fish. Aquat. Sci.*, **6:** 130–140.

- Rajasegar, M., Srinivasan, M. and Rajaram, R., 2000. Phytoplankton diversity associated with the shrimp farm development in Vellar estuary, south India. *Seaweed Res. Utiln.*, **22(1–2):** 125–213.
- Rajkumar, M., Perumal, P., Prabu, V.A., Perumal, N.V. and Rajasekar, K.T., 2009. Phytoplankton diversity in pichavaram mangrove waters from South-East coast of India. *J. Environ. Biol.*, 30: 489–498.
- Ramesh, R., Nammalwar, P. and Gowri, V.S., 2008. Database on coastal information of Tamil Nadu. Report to Environmental information system (ENVIS) centre, Department of Environment, Government of Tamilnadu, Chennai.
- State Action Plan on Climate Change, Government of Tamil Nadu, October 2013.
- Stefanie Schabhüttl, Peter Hingsamer, Gabriele Weigelhofer, Thomas Hein, Achim Weigert and Maren Striebel, 2013. Temperature and species richness effects in phytoplankton communities. *Oecologia*, **171(2)**: 27–536.
- Suchismita Mohapatra and Patra, A.K., 2012. Studies on Phytoplankton Diversity of Bay of Bengal at Puri Sea-Shore in Orissa. *International Journal of Scientific and Research Publications*. **2(11):** ISSN 2250-3153.
- Thirunavukkarasu, K., Soundarapandian, P., Varadharajan, D. and Gunalan, B., 2013. Phytoplankton Composition and Community Structure of Kottakudi and Nari Backwaters, South East of Tamil Nadu. *J. Aquac. Res. Development*, **5:** 211, doi:10.4172/2155-9546.1000211.
- Varadharajan. D. and Soundarapandian, P., 2015. *J. Aquac. Res. Development*, **6(12):** 1–6, DOI: 10.4172/2155-9546.1000383.
- Vignesh, S., Dahms, H.U., Emmanuel, K.V., Gokul, M.S., Muthukumar, K., Kim, B.R. et al., 2014. Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. *Environmental Monitoring and Assessment*, **186(3)**: 1875–1887, doi: 10.1007/s10661-013-3501-z. Pubmed: 24292984.
- Vignesh, S., Dahms, H.U., Kumarasamy, P., Rajendran, A., Hyoung-Joo Jeon and Arthur, James R., 2015. Microbial effects on geochemical parameters in a tropical perennial river basin. *Environmental Processes*, **2:** 125–144, doi: 10.1007/s40710-015-0058-6.
- Vignesh, S., Hans-Uwe Dahms, Muthukumar, K., Vignesh, G. and Arthur, James R., 2016. Biomonitoring along the tropical Indian coast using multiple biomarker. *Plos One*, **11(12):** e0154105. doi:10.1371/journal.pone.0154105.
- Vignesh, S., Muthukumar, K. and Arthur, James R., 2012. Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. *Marine Pollution Bulletin*, **64:** 790–800, doi: 10.1016/j.marpolbul.2012.01.015. Pubmed: 22321173.
- Vignesh, S., Muthukumar, K., Santhosh Gokul M. and Arthur, James R., 2013. Microbial pollution indicators in Cauvery river, southern India. *In:* Mu. Ramkumar

- (Ed.), On a Sustainable Future of the Earth's Natural Resources. Springer Earth System Sciences, 363–376, doi 10.1007/978-3-642-32917-3-20.
- Vignesh, S., 2012. Human impacts on coastal environment in south east coast of India: A microbial approach. Ph.D thesis submitted to Bharathidasan University, India.
- Vignesh, S., 2018. An eclectic pollutants on thermal power plant environs of Tuticorin coastal zone. *Star International Journal*, **6**; **4**(28): 111–122.