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Abstract: A comparative discussion on advantages and disadvantages of natural stands and plantations, including 
their productivity and resistance, began from the moment of first forest plantings and continues to this day. In 
the context, progressive replacement of natural forests by plantations, the question of how that will change the 
carbon storage capacity of forest cover when replacing natural forests with planted ones in a changing climate 
becomes extremely relevant. This article presents the first attempt to answer this question at the transcontinental 
level on a special case for two-needles pine trees (subgenus Pinus L.). The research was carried out using the 
database compiled by the authors on the tree biomass allocation structure for major tree species of Eurasia, in 
particular, the 1880 and 1967 data of naturally regenerated and planted sample pine trees, respectively. Multi-
factor regression models were calculated after combining the matrix of initial data on the structure of tree biomass 
with the mean temperature of January and mean annual precipitation; their adequacy indices allow us to consider 
them reproducible. It is found that the aboveground biomass of equal-sized and equal-aged natural and planted 
trees increases with the rise in the temperature in the month of  January and annual precipitation. This pattern is 
only partially valid for the branches’ biomass. Iit has a specific character for the foliage one. The biomass of all 
components of planted trees is higher than that of natural trees, but the percentage excess varies among different 
components and depends on the level of January’s temperature, but does not depend at all on the level of annual 
precipitation. The uncertainties of estimations, as well as the nature of the obtained regularities, are discussed in 
the text.

Keywords: Two-needles pine trees; Natural stands and plantations; Regression models; Biomass equations; Mean 
January temperature; Annual precipitation.

Introduction

The current climate makes it increasingly important to 
assess the response of forest biomass to the changes 
in the environment, which, in turn, determines 

the possibility of climate stabilisation by reducing 
atmospheric CO2. Climate change projections have 
been linked to significant increases in water deficits 
and natural disturbance regimes in forest ecosystems 
across many parts of the world during the 21st century 
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(Clark et al., 2016). Climate change may lead to 
substantial drought on large territories of Siberian forest 
ecosystems, and increase global warming (Shvidenko 
et al., 2013). This is compounded by anthropogenic 
pressure and lack of governance in Russia (Onuchin 
et al., 2009).

Some researchers have argued that by increasing 
the total area, the world’s forests could store around 
one-quarter of the atmospheric CO2 necessary to limit 
global warming upto 1.5°C above pre-industrial levels 
(Lewis et al., 2019). Nevertheless, others consider it 
almost unreal (Boysen et al., 2017). A study by Sedjo 
and Solomon (1989) indicates that the current annual 
increase in atmospheric carbon could be sequestered 
for about 30 years in approximately 465 million ha 
of plantation forests. As Ciesla (1995) believes, this 
would require increasing more than 10% of the current 
area of forests present on earth. It would also represent 
increasing more than four times the present plantation 
area globally, but there are no suitable areas on such 
scale. 

Mackey (2014) states: “Half the world’s natural 
forests have already been cleared. Only about a quarter 
of what is left retains its carbon-carrying capacity”. 
The planet’s natural forests are slowly decreasing by 
6-13 million ha annually (FAO, 2006; Kirilenko and 
Sedjo, 2007), and are often replaced by artificial ones 
(Niskanen, 2000). This accounts for 4% of the world’s 
forests, which is growing continuously (Brockerhoff 
et al., 2008; Pawson et al., 2013). It is necessary to 
know how this substitution can affect the change in 
the biomass structure of the artificial forests under 
the influence of climate shifts and, accordingly, their 
carbon-depositing capacity and resilience to climate 
change (Pawson et al., 2013). 

Because climate change affects the natural 
environment, established as a result of the long-term 
evolution of vegetation (Emanuel et al., 1985; Kobak, 
Kondrasheva, 1992; Mäkipää et al., 2015; Kosanic et 
al., 2018; Roberts, 2019). This certainly causes changes 
in plant cover productivity (Kobak and Kondrasheva, 
1985; Dulamsuren et al., 2013; Bennett et al., 2016; 
Schaphoff et al., 2016; Fang et al., 2016; Duan et al., 
2018), as well as the accelerated successional changes 
and dominate species in their process (Bolte et al., 
2014). To predict the impact of climate change on forest 
productivity, it is necessary to know the relationship of 
forest biomass with climate indices (Stegen et al., 2011; 
Dymond et al., 2016). 

Since it is well known that man-made forests have 
low environmental sustainability, especially near the 

ecological limits of the species distribution, a large 
number of studies have been dedicated to analyse the 
causes for low sustainability (Maksimov, 1944; Karpov, 
1950; Berezyuk, 1959; Godnev, 1965; Nevzorov, 1970; 
Godnev and Nevzorov, 1970; Antsiferov et al., 1971; 
Mironov, 1977; Sidorov et al., 1978; Makarenko and 
Biryukova, 1982; Biryukova and Makarenko, 1983; 
Biryukova and Biryukov, 1984; Usoltsev, 1985; 
Yuodvalkis and Jonikas, 1985; Verzunov, 1987; Yang 
et al., 2004; Li et al., 2011; Maurer and Pinchuk, 2014; 
Navarro-Cerrillo et al., 2018). On the other hand, man-
made forests, as compared to natural forests, fit better 
for the concept of adaptive forest management (Nabuurs 
et al., 2007). Today, in the context of increasing 
anthropogenic pressure and climate change, it is 
important to know all the advantages and disadvantages 
of both natural stands and plantations in terms of 
biological productivity and their ability to mitigate 
climate change.

Natural and artificial stands differ in many aspects: 
biomass and production component increase in a 
chronosequence (Jordan and Farnworth, 1982; Usoltsev, 
1985, 1988; Gabeev, 1990; Usoltsev and Vanclay, 
1993, 1995; Usoltsev et al., 1994), single-tree biomass 
allometry (Usoltsev, 2016; Durkaya et al., 2016) 
involving its additive case (Usoltsev et al., 2017), 
resistance to droughts (Khonin, 1974; Makarenko 
and Biryukova, 1982; Biryukova and Makarenko, 
1983; Usoltsev, 1985; Verzunov, 1987; Usoltsev and 
Vanclay, 1993, 1995; Usoltsev et al., 1994; Bell et al., 
2015; Navarro-Cerrillo et al., 2018; Rodriguez-Vallejo 
and Navarro-Cerrillo, 2019), fine root distribution, 
seasonal pattern and production (Yang et al., 2004), 
characteristics of the macrostructure of wood (Melekhov 
et al., 2003; Antonov, 2007), technological properties 
of wood, in particular, sliced veneer quality (Tekpetey 
et al., 2014), tree genetic similarity (Gauli et al., 2009), 
variability of morphological markers of the reproductive 
organs (Mazhula, 2018), species diversity (Sobuj, 2011), 
species composition, individual tree distribution, and 
competitive relationships (Gao et al., 2014), pollinator 
abundance in crop fields (Taki et al., 2011), reaction to 
a mass outbreak of parasites (Grabenweger et al., 2005), 
biomass structure in air pollution gradients near copper 
plants (Yusupov et al., 1997; Usoltsev et al., 2012), 
dynamic structural stand density diagrams (Usoltsev and 
Vanclay, 1995; Stankova and Diéguez-Aranda, 2020).

Discussions on the production advantages of natural 
and artificial forests were initiated  from the first forest 
plantation and continuesuntil now. Numerous studies 
proved the presence of higher production indices of 
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plantations as compared to natural stands. (Rubtsov et 
al., 1976; Stage et al., 1988; Gabeev, 1990; Danchenko 
et al., 1991; Chernov, 2001; Antonov, 2007; Lugansky 
and Shipitsina, 2008; Merzlenko, 2017; Usoltsev et al., 
2017). Nevertheless, pieces of evidence were found for 
greater biological productivity of plantations at a young 
age (Zolotukhin, 1966; Makarenko and Biryukova, 
1982; Jordan and Farnworth, 1982; Polyakov et al., 
1986; Romanov et al., 2014). The plantations also 
showed greater biological productivity of natural forests 
as compared to planted forests in Southeast China (Liu 
et al., 2016). Climate change increases this uncertainty, 
and a comparative analysis of possible changes in the 
biomass of natural stands and plantations, as a result of 
climate shifts, becomes even more relevant. 

Recently, a comparative analysis for the accuracy 
of different methods for determining the biological 
productivity of some tree species was completed. The 
results showed that allometric models designed at a 
tree scale gave a smaller prediction error as compared 
to models performed at the forest stand scale (Zeng et 
al., 2018). Such single-tree allometric models for mixed 
stands are particularly relevant. A climate-sensitive 
aboveground biomass model led to a higher prediction 
accuracy of tree biomass than those without climatic 
variables for three larch species (Fu et al., 2017). A 
study was performed on the sensitivity of allometric 
models for aboveground and belowground biomass of 
larches in China to changes in hydrothermal conditions. 
It revealed that the increase in mean annual temperature 
by 1°C leads to an increase in aboveground biomass 
of trees to 0.87% and reduce belowground biomass to 
2.26%. The increase in average annual precipitation 
by 100 mm causes a decrease in aboveground and 
belowground biomasses at 1.52 and 1.09%, respectively 
(Zeng et al., 2017). In such studies, the task is to 
extract the climatic component (climate signals) from 
the residual dispersion of a model calculated. To know 
about climatic factors and make them “recoverable” 
from this “information noise”, it is necessary to consider 
the tree in the model, in addition to the stem diameter 
and height, which is an important factor for determining 
the structure of tree biomass (Nikitin, 1965; Kazaryan, 
1966; Usoltsev, 1972; Tsel’niker, 1994; Vanninen et al., 
1996; Bond-Lamberty et al., 2002; Genet et al., 2011; 
Fatemi et al., 2011; Ochał et al, 2013; Qiu et al., 2018), 
as well as climate sensitivity (Carrer and Urbinati, 2004; 
Yu et al., 2008).

In our study, the first attempt is to compare the 
changes in the component of tree biomass composition 
of two-needles pines of natural and artificial stands 

by trans-Eurasian hydrothermal gradients using the 
unique Eurasian database of, harvest data on single tree 
biomass compiled by V.A. Usoltsev (2016). As climatic 
variables are geographically known, it can be expected 
that the improvement of allometric biomass models, 
considering not only the age, height and stem diameter 
as independent variables and also climate indices, will 
allow to identify and quantify some changes in the 
biomass structure of equal-aged and equal-sized trees 
related to climate variables and will provide climate-
sensitivity of such models (Forrester et al., 2017; Zeng 
et al., 2017; Fu et al., 2017). The implementation of 
our intention is encouraged by the result of Rodriguez-
Vallejo and Navarro-Cerrillo (2019) showed that 
climatic variables (temperature and precipitation), as 
well as site and soil conditions, cause differences in the 
forest cover change between natural and planted stands. 

Material and Methods

From the mentioned database, the data for the subgenus 
Pinus L. aboveground biomass in a number of 2628 
sample trees, including 1980 and 1967 for natural and 
artificial stands respectively, were taken (Table 1). 
There were only 370 definitions for root biomass in the 
database. The subgenus Pinus L. is mainly represented 
by the Scots pine (Pinus sylvestris L.) (86 % of the total 
data) and in a smaller number by species P. tabuliformis 
Carr., P. massoniana Lamb., P. densiflora S. et Z., P. 
thunbergii Parl.

The joint analysis of different species is caused by 
the impossibility of growing the same tree species 
throughout Eurasia. As a result of which their areas 
within the genus are confined to certain ecoregions. 
These are substitutive or vicariate species that arose 
in cases of geologically long-standing separation of a 
once-continuous area under influence of climate traits 
(Tolmachev, 1962) or as a result of climate-related 
morphogenesis (Chernyshev, 1974). 

Sample plots for tree biomass estimations are 
plotted against the mean January temperature (Figure 
1) and mean annual precipitation (Figure 2). The 
use of evapotranspiration as a combined index in 
the assessment of tree production is useless since it 
explains only 24% of its variability compared to 42%, 
which shows its relation to mean annual precipitation, 
and compared to 31%, which provides the relation to 
mean annual temperature (Ni et al., 2001). Therefore, 
the use of temperature and precipitation indices taken 
from World Weather Maps (2007) are preferable as one 
of the most informative climatic factors. 
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Table 1: Distribution of the 2628 sample trees by species, countries, regions and mensuration indices

Region Species of the
subgenus Pinus L.

Ranges: Number of 
sample treesAge, yrs DBH, cm Height, m

Trees in Natural Forest
West Europa P. sylvestris L. 11 ÷ 100 1.4 ÷ 53.1 2.3 ÷ 32.0   19
Scandinavia P. sylvestris L. 9 ÷ 212 1.9 ÷ 42.0 3.3 ÷ 32.4   117
The Ukraine and Byelorussia P. sylvestris L. 24 ÷ 186 1.5 ÷ 54.6 1.6 ÷ 36.6   205
European Russia P. sylvestris L. 10 ÷ 207 0.9 ÷ 54.0 2.2 ÷ 30.2   514
Turgay deflection P. sylvestris L. 13 ÷ 110 0.3 ÷ 47.8 1.4 ÷ 27.4   411
Central Siberia P. sylvestris L. 4 ÷ 430 0.5 ÷ 65.6 1.6 ÷ 28.8   587

China P. sylvestris L.
P. massoniana Lamb. 20 ÷ 100 8.0 ÷ 22.3 10.4 ÷ 19.0   9

Japan P. densiflora S. et Z.
P. thunbergii Parl.

22 ÷ 120 9.0 ÷ 60.9 9.5 ÷ 25.7   18

Total   1880
Trees in Plantations

West and Central Europa P. sylvestris L. 7 ÷ 50 0.5 ÷ 36.5 1.4 ÷ 21.0   77
Scandinavia P. sylvestris L. 5 ÷ 143 1.2 ÷ 37.1 2.1 ÷ 25.6   196
The Ukraine and Byelorussia P. sylvestris L. 8 ÷ 90 2.1 ÷ 42.9 2.2 ÷ 34.7   1010
European Russia P. sylvestris L. 6 ÷ 78 1.5 ÷ 30.1 1.8 ÷ 32.6   160
Turgay deflection P. sylvestris L. 9 ÷ 50 0.4 ÷ 21.7 1.4 ÷ 16.2   215
Central Siberia P. sylvestris L. 10 ÷ 73 2.0 ÷ 36.0 2.4 ÷ 21.6   170
Iraq P. halepensis Mill. 24 15.8 7.4   1
China P. tabuliformis Carr. 17 ÷ 25 4.0 ÷ 12.0 3.3 ÷ 10.8   8

Japan P. densiflora S. et Z.
P. thunbergii Parl. 3 ÷ 53 1.7 ÷ 39.1 2.0 ÷ 18.7   130

Total   1967

Summer temperature is the greatest contributor 
that can explain the variations from 16% (Berner et 
al., 2013) to 50% (Bouriaud et al., 2005) of the total 
dispersion by estimating the stem biomass growth, using 
tree rings width. Moreover, the accurate relationship 
(positive or negative) of stand biomass depends on 
intra-annual temperature which was taken as a predictor. 
According to research by Khan et al. (2019), the relation 
of stand biomass is positive with the maximum intra-
annual temperature and negative with the minimum or 
average annual temperature. With an inter-annual time 
step, the influence of summer temperature is more 
pronounced (Zubairov et al., 2018). But in long-term 
perspective, the prevailing influence is acquired by 
winter temperatures (Morley et al., 2017), as in the 20th 
century, winter temperatures in the Northern hemisphere 
are changing faster than summer temperatures (Emanuel 

et al., 1985; Folland et al., 2001; Laing and Binyamin, 
2013; Felton et al., 2016). In terms of regression 
analysis, the comparison of weak temporal trend of 
summer temperatures and a steep trend of winter 
temperatures shows a smaller regression slope and a 
worse ratio of residual variance to the total variance by 
this regression. Taking the mean winter temperature as 
one of the independent variables, we get a more reliable 
dependence with a higher predictive ability.

The final structure of the model includes only those 
mass-forming indices that are statistically significant for 
all biomass components. It has the form as:

lnPi =  a0i + a1i (lnA) + a2i (lnD) + a3i (lnH) + a4i (lnD) 
      (lnH) + a5iB + a6iB [ln (T + 40)] + a7i[ln (T + 40)] +  
      a8i(lnPR) + a9i[ln(T + 40)] · (lnPR)	 (1)

where Pi is biomass of ith component in kg: A is tree 
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Figure 2: Distribution of sample plots, where 1883 and 1969 trees of natural (rings) and artificial (squares) origin 
correspondingly have been harvested, on the map of the mean annual precipitation, mm (World Weather Maps, 2007; 

http://www.mapmost.com/world-precipitation-map/free-world-precipitation-map/).

Figure 1: Distribution of sample plots, where 1883 and 1969 trees of natural (rings) and artificial (squares) origin 
correspondingly have been harvested, on the map of the mean January temperature, °C (World Weather Maps, 2007; 

https://store.mapsofworld.com/image/cache/data/map_2014/currents-and-temperature-jan-enlarge-900x700.jpg).
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age in years; D is stem diameter at breast height in 
cm; H is tree height in m; i is the index of biomass 
component: stem over bark (Ps), needles (Pf), branches 
(Pb) and aboveground (Pa); B is the binary variable 
that coordinates the biomass values of natural pines (B 
= 0) and pine plantations (B = 1); Т is mean January 
temperature in °С and РR is mean annual precipitation 
in mm.

Along with the three main mass forming variables 
- tree age А, diameter D and height H of a tree, the 
product of variables (lnD)(lnH) is introduced as an 
additional predictor, the need for which was shown 
earlier by Usoltsev et al. (2019). Since the mean January 
temperature in the northern part of Eurasia has negative 
values, the corresponding independent variable is 
modified and subjected to log-log procedure as T+40. 

When we introduce only one binary variable 
B in equation (1), the 3-D surface (temperature – 
precipitation – biomass) in X-Y-Z coordinates shifts 
between natural and artificial trees only along the Z axis 

by the value of the regression coefficient at the binary 
variable B. According to our assumption, the biomass of 
trees in natural stands and plantations reacts differently 
to changes in climate variables (Rodriguez-Vallejo and 
Navarro-Cerrillo, 2019). To include these differences in 
the designed model (1), along with B, we introduce the 
synergisms B·[ln(T + 40)] and B·(lnPR) as independent 
variables. To account for the simultaneous effects of 
temperature and precipitation, the synergism [ln(T + 
40)]·(lnPR) is introduced in equation (1) as another 
independent variable.

Results 

The regression coefficients of the multiple regression 
equation (1) were calculated using the Statgraphics 
software (see http://www.statgraphics.com/ for more 
information) as shown in Table 2. The calculations were 
done after the correction for logarithmic transformation 
by Baskerville (1972) and anti-log transforming 

Table 2: Characteristics of regression model (1) results

Pi   Regression models 
Ps   2.0143E-03 A0.1525 D1.5284 H0.4322 D0.1398(lnH) e–0.1448B   (T+40)0.0526B

Pf   7.842E-05 A–0.4624 D2.4422 H–1.2824 D0.1571(lnH) e1.3265B (T+40)–0.3345B

Pb   6.524E-06 A–0.1796 D2.8848 H–1.6954 D0.1995(lnH) e0.1512B (T+40)–0.0343B

Pa   2.218E-04 A0.0407 D1.7700 H–0.1235 D0.1778(lnH) e0.2536B (T+40)–0.0629B

Pi Regression models adjR2* SE*
Ps (T + 40)0.6901 PR0.4292 (T + 40)–0.1046(lnPR) 0.987 1.24
Pf (T + 40)2.1870 PR1.4287 (T + 40)–0.3918(lnPR) 0.900 1.61
Pb (T + 40)2.4966 PR1.5638 (T + 40)–0.4007(lnPR) 0.926 1.66
Pa (T + 40)1.6918 PR1.0370 (T + 40)–0.2635(lnPR) 0.986 1.24

* The abbreviation adjR2 is a coefficient of determination adjusted for the number of parameters;  
   SE – equation standard error.

procedure. The synergism B(lnPR) as an independent 
variable was not statistically significant. All regression 
coefficients of mass-forming variables in equations (1) 
are characterized by the significance level of 0.05 or 
better, and the resulting equations are reproducible.

The results of the equation (1) in tabular form 
represent a rather awkward table. We took the calculated 
data of component biomass from it for the age of 50 
years, D equal to 14 cm and H equal to 13 m and built 
3D-graphs of their dependence on temperature and 
precipitation (Figure 3). 

Since many sample trees with an estimated 
belowground biomass are seven times less than the 

numbers of sample trees for estimation of aboveground 
biomass. It is considered that variability of below-
ground biomass estimation is higher, so we are at risk 
to get wrong patterns, which are logical contradictions 
(do not correspond) with the patterns shown in Figure 
3. It is known that relative (dimensionless) indices are 
more integrated than absolute values (Detlaf and Detlaf, 
1982), hence, they are characterised by genetically 
determined stability (Lyr et al., 1967). Therefore, the 
regression method is used to explain the variability of 
the ratio of belowground to aboveground biomass (R/S 
as root: shoot ratio), rather than the absolute values of 
belowground tree biomass. Initially, the structure of the 
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Figure 3: Dependence of pine tree biomass in natural stands (a) and plantations (b) based on mean January temperature 
(T) and mean annual precipitation (PR). Designations: Ps, Pf, Pb and Pa are, respectively, dry biomass in kg of the 

stem, foliage, branches and aboveground.
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model (1) is adopted for the analysis of the R/S ratio. 
But, as expected, most of the parameters of the model 
(1) were not statistically significant, and the equation 
finally obtained is:

R/S = 1.562D–0.1949(T + 40)–0.4666; R2 = 0.153;  
      SE = 1.54			  (2)

The graphical interpretation is shown in Figure 4. 
Equation (2) is characterised by a fairly low coefficient 
of determination since it is known that the closer 
the relationship between two factors, lesser will be 
the relationship explained by known determining 
factors (Usoltsev, 1985). However, the Student’s 
criteria determining the significance of the regression 
coefficients of the model (2) are quite high and are 6.9 
and 5.9, which is more than 2.0. We can see that as we 
move from warm to cold climate, the absolute value 
of the R/S ratio for thin trees (DBH = 8 cm) increases 
from 0.17 to 0.26, and for thick trees (DBH = 32 cm) 
the increase is from 0.13 to 0.20, but in percentage 
terms, it does not depend on the tree size and increase 
in both cases by 48%. 

Discussion

From the analyses of the 3D-surfaces as shown in 
Figure 3, we can distinguish two stages: first, we 
note the patterns common to trees in natural stands 

and plantations, and then, consider this in detail. It 
is established what and how the resulting patterns of 
natural trees are different from trees of plantations.

For the stem biomass, we see that it increases with 
increasing precipitation as well as with increasing 
temperatures in areas of insufficient moisture in all 
temperature zones. But as we move to areas of sufficient 
moisture, the last trend modifies.

The biomass of needles and branches increases 
in a cold climate with increasing precipitation. This 
tendency is also seen in areas of sufficient moisture 
with a decrease of the temperature. But as we move to 
areas of insufficient moisture and warm regions, these 
trends show changes.

Aboveground biomass sums up component-specific 
patterns by itself, amplifying the coincident ones 
and neutralising (compensating) those which are 
contradictory. In cold areas, there is a significant 
increase in biomass with increasing precipitation, but 
moving to the warm climate this trend disappears. In 
humid regions, the biomass increases with the decrease 
in temperature, but in water-deficient regions, the 
pattern changes to the opposite trend.

After analysing differences in the biomass trends 
of natural and plantation trees, it should be noted 
that, judging by the structure of the obtained equation 
(1), these differences are only related to changes in 
temperatures, not precipitation, since the synergism 

Figure 4: Change of the theoretical R/S ratio in relation to tree stem diameter  
under different mean January temperature (T).
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B·(lnPR) was not statistically significant. The biomass 
of all components of plantation trees is higher than 
that of natural forest, but the percentage of this excess 
is different for different components and changes at 
different levels to changing temperature. Changes in 
the excess of biomass components of plantation trees 
over natural forests are shown in Table 3. 

The table shows that as  the move is from cold to 
warm climate, the increase in tree biomass of plantation 
over natural forest increases from 1.3 to 5.3% for stem 
biomass, decreases from 28 to 6% for foliage biomass, 
as well as from 4.8 to 2.1% and from 6.3 to 1.5% 
for branches and aboveground biomass, respectively, 
regardless of the precipitation level.

However, the most interesting question is how 
much the forest biomass will change with assumed 
deviations in temperature, for example, by 1°C and 
with a deviation in precipitation from the usual norm, 
for example, by 100 mm per year. The constructed 
model answers such question to single-trees. To do this, 
we consider the first derivative of our 3-dimensional 
surfaces (Figure 3), graphically, not analytically i.e., 
we take off the biomass difference interval (Δ, %%) 
corresponding to temperature interval at 1°C and 
precipitation interval 100 mm directly from the graphs 
or the corresponding tables, and get the answer in the 
form of three-dimensional surfaces, divided into plus 
and minus areas that correspond to the increase or 
decrease in the biomass of trees having the fixed age 
of 50 years, DBH of 14 cm and height of 13 m. 

In this case, the differences between the biomass of 
natural forest and plantation trees become more obvious 
as shown in Figure 5. If the stem biomass of plantation 
trees increases as the temperature rises by 1°C over 
the entire precipitation range from 300 to 900 mm (the 
entire 3D surface is located above the zero planes), then 
the biomass of natural trees ranging from 300 to 700 
mm (located above the zero planes), and in the range 
of 700 to 900 mm will be decreased (located below 
the zero planes). 

The foliage biomass, in this case, decreases over the 
entire range of precipitation from 300 to 900 mm, both 
in natural forest and plantation trees (the entire surface 
is located below the zero plane), but the percentage of 
decrease in the plantation trees is greater than in the 
natural forest.

In terms of variations in the branch biomass, when 
the temperature assumes to increase by 1°C, natural 
and plantation trees do not differ significantly and an 
increase in the precipitation range from 300 to 500 mm 
and a decrease in the range from 500 to 900 mm can 
be observed. 

When the temperature increases by 1°C, there is 
also a slight difference between natural and plantation 
trees in the aboveground biomass variations: the former 
increase in the precipitation range from 300 to 600 mm, 
and the latter increases in the range from 300 to 500 
mm only.

When annual precipitation assumes to be increased 
by 100 mm at constant temperatures of January, then 
the aboveground biomass of stems, branches increases 
in all temperature zones, and the foliage biomass only 
increase in the range of temperature zones from –20°C 
to –2°C, for both natural forest and plantation trees as 
shown in Figure 6. 

The similar modification of Figure 4 for the R/S ratio 
is shown in Figure 7. If the overall decrease in R/S ratio 
during the transition from cold to warm climate was 
48%, then the decrease in R/S ratio “at the point”, i.e., 
when shifting in the same manner by 1°C, was from 
–2.3% to –1.0%, regardless of the thickness of tree 
stems and their origin. 

It is known that the solution to each new problem 
and the corresponding removal of the associated 
uncertainties generates several new issues. In our case, 
some uncertainties have arisen too: 

	1.	 The patterns of biomass amount change under 
assumed changes in climatic conditions as shown in 

Table 3: Change in the excess percentage of different components biomass of plantation trees  
over natural trees due to variation in temperature of January

Biomass 
component

Mean temperature of January, °C
–20 –16 –12 –8 –4 0 4

Stems 1.3 2.2 3.0 3.7 4.3 4.8 5.3
Foliage 27.7 23.1 19.1 15.4 12.0 8.8 5.9
Branches 4.8 4.2 3.6 3.2 2.8 2.5 2.1
Above ground 6.3 5.2 4.3 3.5 2.8 2.1 1.5
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Figure 5: Change in tree biomass when temperature assumes to be increased by 1°C due to the expected 
climate change at temperature and precipitation. Symbols Δs, Δf, Δb and Δa on the coordinate axes means 
the change (± %) in biomass of stems, foliage, branches and aboveground, respectively, with the temperature 

increase by 1°C at the constant precipitation.
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Figure 6: Change of tree biomass when precipitation assumes to be increased by 100 mm due to the expected 
climate change at different temperatures and precipitation. The symbols Δs, Δf, Δb and Δa along the coordinate 
axes represent the change (±%) in aboveground biomass of stems, foliage, branches, respectively, with precipitation  

increase by 100 mm and at the constant mean temperatures of January.

Figure 7: Change of R/S ratio when temperature assumes 
to be increased by 1°C due to the expected climate change 

at different temperatures.

Figures 5 and 6 are hypothetical. They reflect long-
term adaptive responses of forest stands to regional 
climatic conditions and do not take into account 
the rapid trends of current environmental changes, 
which shows serious constraints on the ability 
of forests to adapt the new climatic conditions 
(Givnish, 2002; Alcamo et al., 2007; Berner et al., 
2013; Schaphoff et al., 2016; Spathelf et al., 2018; 
Vasseur et al., 2018; DeLeo et al., 2019; Denney 
and Anderson, 2019). The law of limiting factors 
(Liebig, 1840; Shelford, 1913) works well in static 
conditions. With a rapid change in limiting factors 
(such as air temperature or precipitation), forest 
ecosystems in a transitional (non-stationary) state, 
in which some factors that were still not significant 
may come to the fore, and the result may be 
determined by other limiting factors (Odum, 1975).

	2.	 A disadvantage of the database used in this study 
is the uneven spatial distribution and different 
representations of sampling sites for natural and 
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plantation trees over Eurasia as shown in Figures 
1 and 2 and Table 1. In the regression analysis of 
biomass data we used the least-squares method, it 
estimates of biomass in ecoregions with a minimum 
number of sampling sites may be biased due to the 
greater “information weight” of ecoregions with the 
largest number of sampling sites. Methodological 
uncertainties causing biases in biomass amounts 
in parts of the individual tree may also affect the 
accuracy of the estimates. 

	3.	 The response of forests to climate change also 
depends on whether the photosynthetic benefits 
from increased atmospheric CO2 compensates 
for increased physiological stresses from higher 
temperatures or not (Sperry, 2019). For example, 
moderate temperature rise (3°C) along with rising 
CO2 concentration can increase net photosynthesis 
of plant population but can decrease biomass 
production because of increased respiration. 
However, an increase in temperature by 6°C 
can decrease both photosynthesis and biomass 
production, regardless of species’ optimal 
temperature (Gustafson et al., 2017). There is a 
problem related to the associated effects with the 
simultaneous interaction of various factors (Pucko 
et al., 2011; Gray and Brady, 2016; Gustafson et 
al., 2017).

	4.	 In equations (1), three mass-determining factors (A, 
D, and H) cover most of the explained variations: 
for the biomass of stem, needles, branches, and 
aboveground which are 94, 86, 91, and 87%, 
respectively. Climate variables and differences 
between natural forest and plantation trees account 
for only 6 to 13% of the variability. The structure 
of these “residual” variables is highly variable and 
heterogeneous. In addition, to the already noted 
uneven filling the initial data matrix, there are 
discrepancies between the age periods of mapping 
as shown in Figures 1 and 2, and calendar ages of 
different biomass components, between the large 
step of temperature and precipitation isolines on the 
maps and local topography features, as well as local 
soil differences, despite the fact that the soil zoning 
reflects the action of climatic factors (Dokuchaev, 
1948; Rukhovich et al., 2019).

Taking into account the stated methodological and 
conceptual uncertainties, the results presented in this 
study provide a solution to the problem only in the first 
approximation and should be considered as preliminary 
ones and having not so much factual as methodological 

significance. They can be modified if the biomass 
database will be enhanced by additional data, mainly 
site-specific and strand-specific characteristics as well 
as by more advanced methodology. 

Conclusions

The database compilation of natural forest and 
plantation of single-trees concludes that the above-
ground and stem biomass of equal-sized and equal-aged 
natural forest and plantation trees increases with the rise 
of temperature in January and annual precipitation. This 
pattern is partially valid for the branches’ biomass, and it 
has a specific character for the foliage one. The biomass 
components of plantation trees are higher than that of 
natural forest, but the percentage of excess biomass 
varies among different components and depends on 
the level of January’s temperatures. However, it does 
not depend on the level of annual precipitation. As one 
moves from cold to warm climate, the excess biomass 
of plantation tree over natural forest increases from 1.3 
to 5.3% in stem biomass, it decreases from 28 to 6% 
for foliage biomass, as well as from 4.8 to 2.1% and 
6.3 to 1.5% for branches and aboveground biomass, 
respectively, regardless of the precipitation level. As one 
moves from warm to cold climate, the absolute value 
of the root: shoot (R/S) ratio for small trees (DBH = 8 
cm) increases from 0.17 to 0.26, and for big trees (DBH 
= 32 cm) from 0.13 to 0.20. In terms of percentage, it 
does not depend on the stem size and increases by 48%. 
The results presented can be accounted for as the first 
approximation only.
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