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Abstract: A comparative discussion on advantages and disadvantages of natural stands and plantations, including
their productivity and resistance, began from the moment of first forest plantings and continues to this day. In
the context, progressive replacement of natural forests by plantations, the question of how that will change the
carbon storage capacity of forest cover when replacing natural forests with planted ones in a changing climate
becomes extremely relevant. This article presents the first attempt to answer this question at the transcontinental
level on a special case for two-needles pine trees (subgenus Pinus L.). The research was carried out using the
database compiled by the authors on the tree biomass allocation structure for major tree species of Eurasia, in
particular, the 1880 and 1967 data of naturally regenerated and planted sample pine trees, respectively. Multi-
factor regression models were calculated after combining the matrix of initial data on the structure of tree biomass
with the mean temperature of January and mean annual precipitation; their adequacy indices allow us to consider
them reproducible. It is found that the aboveground biomass of equal-sized and equal-aged natural and planted
trees increases with the rise in the temperature in the month of January and annual precipitation. This pattern is
only partially valid for the branches’ biomass. lit has a specific character for the foliage one. The biomass of all
components of planted trees is higher than that of natural trees, but the percentage excess varies among different
components and depends on the level of January’s temperature, but does not depend at all on the level of annual
precipitation. The uncertainties of estimations, as well as the nature of the obtained regularities, are discussed in
the text.

Keywords: Two-needles pine trees; Natural stands and plantations; Regression models; Biomass equations; Mean
January temperature; Annual precipitation.

Introduction

The current climate makes it increasingly important to
assess the response of forest biomass to the changes
in the environment, which, in turn, determines
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the possibility of climate stabilisation by reducing
atmospheric CO,. Climate change projections have
been linked to significant increases in water deficits
and natural disturbance regimes in forest ecosystems
across many parts of the world during the 21st century
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(Clark et al., 2016). Climate change may lead to
substantial drought on large territories of Siberian forest
ecosystems, and increase global warming (Shvidenko
et al., 2013). This is compounded by anthropogenic
pressure and lack of governance in Russia (Onuchin
et al., 2009).

Some researchers have argued that by increasing
the total area, the world’s forests could store around
one-quarter of the atmospheric CO, necessary to limit
global warming upto 1.5°C above pre-industrial levels
(Lewis et al., 2019). Nevertheless, others consider it
almost unreal (Boysen et al., 2017). A study by Sedjo
and Solomon (1989) indicates that the current annual
increase in atmospheric carbon could be sequestered
for about 30 years in approximately 465 million ha
of plantation forests. As Ciesla (1995) believes, this
would require increasing more than 10% of the current
area of forests present on earth. It would also represent
increasing more than four times the present plantation
area globally, but there are no suitable areas on such
scale.

Mackey (2014) states: “Half the world’s natural
forests have already been cleared. Only about a quarter
of what is left retains its carbon-carrying capacity”.
The planet’s natural forests are slowly decreasing by
6-13 million ha annually (FAO, 2006; Kirilenko and
Sedjo, 2007), and are often replaced by artificial ones
(Niskanen, 2000). This accounts for 4% of the world’s
forests, which is growing continuously (Brockerhoff
et al., 2008; Pawson et al., 2013). It is necessary to
know how this substitution can affect the change in
the biomass structure of the artificial forests under
the influence of climate shifts and, accordingly, their
carbon-depositing capacity and resilience to climate
change (Pawson et al., 2013).

Because climate change affects the natural
environment, established as a result of the long-term
evolution of vegetation (Emanuel et al., 1985; Kobak,
Kondrasheva, 1992; Mikipéi et al., 2015; Kosanic et
al., 2018; Roberts, 2019). This certainly causes changes
in plant cover productivity (Kobak and Kondrasheva,
1985; Dulamsuren et al., 2013; Bennett et al., 2016;
Schaphoff et al., 2016; Fang et al., 2016; Duan et al.,
2018), as well as the accelerated successional changes
and dominate species in their process (Bolte et al.,
2014). To predict the impact of climate change on forest
productivity, it is necessary to know the relationship of
forest biomass with climate indices (Stegen et al., 2011;
Dymond et al., 2016).

Since it is well known that man-made forests have
low environmental sustainability, especially near the

ecological limits of the species distribution, a large
number of studies have been dedicated to analyse the
causes for low sustainability (Maksimov, 1944; Karpov,
1950; Berezyuk, 1959; Godnev, 1965; Nevzorov, 1970;
Godnev and Nevzorov, 1970; Antsiferov et al., 1971;
Mironov, 1977; Sidorov et al., 1978; Makarenko and
Biryukova, 1982; Biryukova and Makarenko, 1983;
Biryukova and Biryukov, 1984; Usoltsev, 1985;
Yuodvalkis and Jonikas, 1985; Verzunov, 1987; Yang
et al., 2004; Li et al., 2011; Maurer and Pinchuk, 2014;
Navarro-Cerrillo et al., 2018). On the other hand, man-
made forests, as compared to natural forests, fit better
for the concept of adaptive forest management (Nabuurs
et al., 2007). Today, in the context of increasing
anthropogenic pressure and climate change, it is
important to know all the advantages and disadvantages
of both natural stands and plantations in terms of
biological productivity and their ability to mitigate
climate change.

Natural and artificial stands differ in many aspects:
biomass and production component increase in a
chronosequence (Jordan and Farnworth, 1982; Usoltsev,
1985, 1988; Gabeev, 1990; Usoltsev and Vanclay,
1993, 1995; Usoltsev et al., 1994), single-tree biomass
allometry (Usoltsev, 2016; Durkaya et al., 2016)
involving its additive case (Usoltsev et al., 2017),
resistance to droughts (Khonin, 1974; Makarenko
and Biryukova, 1982; Biryukova and Makarenko,
1983; Usoltsev, 1985; Verzunov, 1987; Usoltsev and
Vanclay, 1993, 1995; Usoltsev et al., 1994; Bell et al.,
2015; Navarro-Cerrillo et al., 2018; Rodriguez-Vallejo
and Navarro-Cerrillo, 2019), fine root distribution,
seasonal pattern and production (Yang et al., 2004),
characteristics of the macrostructure of wood (Melekhov
et al., 2003; Antonov, 2007), technological properties
of wood, in particular, sliced veneer quality (Tekpetey
et al., 2014), tree genetic similarity (Gauli et al., 2009),
variability of morphological markers of the reproductive
organs (Mazhula, 2018), species diversity (Sobuj, 2011),
species composition, individual tree distribution, and
competitive relationships (Gao et al., 2014), pollinator
abundance in crop fields (Taki et al., 2011), reaction to
a mass outbreak of parasites (Grabenweger et al., 2005),
biomass structure in air pollution gradients near copper
plants (Yusupov et al., 1997; Usoltsev et al., 2012),
dynamic structural stand density diagrams (Usoltsev and
Vanclay, 1995; Stankova and Diéguez-Aranda, 2020).

Discussions on the production advantages of natural
and artificial forests were initiated from the first forest
plantation and continuesuntil now. Numerous studies
proved the presence of higher production indices of
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plantations as compared to natural stands. (Rubtsov et
al., 1976; Stage et al., 1988; Gabeev, 1990; Danchenko
et al., 1991; Chernov, 2001; Antonov, 2007; Lugansky
and Shipitsina, 2008; Merzlenko, 2017; Usoltsev et al.,
2017). Nevertheless, pieces of evidence were found for
greater biological productivity of plantations at a young
age (Zolotukhin, 1966; Makarenko and Biryukova,
1982; Jordan and Farnworth, 1982; Polyakov et al.,
1986; Romanov et al., 2014). The plantations also
showed greater biological productivity of natural forests
as compared to planted forests in Southeast China (Liu
et al., 2016). Climate change increases this uncertainty,
and a comparative analysis of possible changes in the
biomass of natural stands and plantations, as a result of
climate shifts, becomes even more relevant.

Recently, a comparative analysis for the accuracy
of different methods for determining the biological
productivity of some tree species was completed. The
results showed that allometric models designed at a
tree scale gave a smaller prediction error as compared
to models performed at the forest stand scale (Zeng et
al., 2018). Such single-tree allometric models for mixed
stands are particularly relevant. A climate-sensitive
aboveground biomass model led to a higher prediction
accuracy of tree biomass than those without climatic
variables for three larch species (Fu et al., 2017). A
study was performed on the sensitivity of allometric
models for aboveground and belowground biomass of
larches in China to changes in hydrothermal conditions.
It revealed that the increase in mean annual temperature
by 1°C leads to an increase in aboveground biomass
of trees to 0.87% and reduce belowground biomass to
2.26%. The increase in average annual precipitation
by 100 mm causes a decrease in aboveground and
belowground biomasses at 1.52 and 1.09%, respectively
(Zeng et al., 2017). In such studies, the task is to
extract the climatic component (climate signals) from
the residual dispersion of a model calculated. To know
about climatic factors and make them “recoverable”
from this “information noise”, it is necessary to consider
the tree in the model, in addition to the stem diameter
and height, which is an important factor for determining
the structure of tree biomass (Nikitin, 1965; Kazaryan,
1966; Usoltsev, 1972; Tsel’niker, 1994; Vanninen et al.,
1996; Bond-Lamberty et al., 2002; Genet et al., 2011;
Fatemi et al., 2011; Ochat et al, 2013; Qiu et al., 2018),
as well as climate sensitivity (Carrer and Urbinati, 2004;
Yu et al., 2008).

In our study, the first attempt is to compare the
changes in the component of tree biomass composition
of two-needles pines of natural and artificial stands

by trans-Eurasian hydrothermal gradients using the
unique Eurasian database of, harvest data on single tree
biomass compiled by V.A. Usoltsev (2016). As climatic
variables are geographically known, it can be expected
that the improvement of allometric biomass models,
considering not only the age, height and stem diameter
as independent variables and also climate indices, will
allow to identify and quantify some changes in the
biomass structure of equal-aged and equal-sized trees
related to climate variables and will provide climate-
sensitivity of such models (Forrester et al., 2017; Zeng
et al., 2017; Fu et al., 2017). The implementation of
our intention is encouraged by the result of Rodriguez-
Vallejo and Navarro-Cerrillo (2019) showed that
climatic variables (temperature and precipitation), as
well as site and soil conditions, cause differences in the
forest cover change between natural and planted stands.

Material and Methods

From the mentioned database, the data for the subgenus
Pinus L. aboveground biomass in a number of 2628
sample trees, including 1980 and 1967 for natural and
artificial stands respectively, were taken (Table 1).
There were only 370 definitions for root biomass in the
database. The subgenus Pinus L. is mainly represented
by the Scots pine (Pinus sylvestris L.) (86 % of the total
data) and in a smaller number by species P. tabuliformis
Carr., P massoniana Lamb., P. densiflora S. et Z., P.
thunbergii Parl.

The joint analysis of different species is caused by
the impossibility of growing the same tree species
throughout Eurasia. As a result of which their areas
within the genus are confined to certain ecoregions.
These are substitutive or vicariate species that arose
in cases of geologically long-standing separation of a
once-continuous area under influence of climate traits
(Tolmachev, 1962) or as a result of climate-related
morphogenesis (Chernyshev, 1974).

Sample plots for tree biomass estimations are
plotted against the mean January temperature (Figure
1) and mean annual precipitation (Figure 2). The
use of evapotranspiration as a combined index in
the assessment of tree production is useless since it
explains only 24% of its variability compared to 42%,
which shows its relation to mean annual precipitation,
and compared to 31%, which provides the relation to
mean annual temperature (Ni et al., 2001). Therefore,
the use of temperature and precipitation indices taken
from World Weather Maps (2007) are preferable as one
of the most informative climatic factors.
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Table 1: Distribution of the 2628 sample trees by species, countries, regions and mensuration indices

Region Species of the Ranges: Number of
subgenus Pinus L. Age, yrs DBH. c¢m Height, m sample trees
Trees in Natural Forest
West Europa P, sylvestris L. 11+ 100 1.4 +53.1 2.3 +320 19
Scandinavia P, sylvestris L. 9 +212 1.9 +42.0 33+324 117
The Ukraine and Byelorussia P, sylvestris L. 24 + 186 1.5+ 546 1.6 +~ 36.6 205
European Russia P, sylvestris L. 10 + 207 0.9 +54.0 2.2 +30.2 514
Turgay deflection P, sylvestris L. 13 + 110 0.3+478 14+274 411
Central Siberia P. sylvestris L. 4 + 430 0.5+ 65.6 1.6 +28.8 587
China 2 > Ziff; llfll’l]:Z Loy, 207100 80+223  104+19.0 9
Japan P densiﬂorc'z.S. etZ. 22 =120 9.0 +60.9 9.5+257 13
P. thunbergii Parl.
Total 1880
Trees in Plantations
West and Central Europa P sylvestris L. 7+ 50 0.5 +36.5 1.4+21.0 77
Scandinavia P, sylvestris L. 5+143 1.2 +37.1 2.1 +25.6 196
The Ukraine and Byelorussia P sylvestris L. 8+90 2.1 429 2.2 +34.7 1010
European Russia P sylvestris L. 6+78 1.5 +30.1 1.8 +32.6 160
Turgay deflection P sylvestris L. 9 +50 04+21.7 1.4 +16.2 215
Central Siberia P, sylvestris L. 10+ 73 2.0 +36.0 24 +21.6 170
Iraq P. halepensis Mill. 24 15.8 7.4 1
China P tabuliformis Carr. 17 +25 4.0+ 12.0 33+10.8 8
Japan 2 ;f;:;ﬁigi i‘ajz‘ 3+53 1.7+391 2.0+ 187 130
Total 1967

Summer temperature is the greatest contributor
that can explain the variations from 16% (Berner et
al., 2013) to 50% (Bouriaud et al., 2005) of the total
dispersion by estimating the stem biomass growth, using
tree rings width. Moreover, the accurate relationship
(positive or negative) of stand biomass depends on
intra-annual temperature which was taken as a predictor.
According to research by Khan et al. (2019), the relation
of stand biomass is positive with the maximum intra-
annual temperature and negative with the minimum or
average annual temperature. With an inter-annual time
step, the influence of summer temperature is more
pronounced (Zubairov et al., 2018). But in long-term
perspective, the prevailing influence is acquired by
winter temperatures (Morley et al., 2017), as in the 20
century, winter temperatures in the Northern hemisphere
are changing faster than summer temperatures (Emanuel

et al., 1985; Folland et al., 2001; Laing and Binyamin,
2013; Felton et al., 2016). In terms of regression
analysis, the comparison of weak temporal trend of
summer temperatures and a steep trend of winter
temperatures shows a smaller regression slope and a
worse ratio of residual variance to the total variance by
this regression. Taking the mean winter temperature as
one of the independent variables, we get a more reliable
dependence with a higher predictive ability.

The final structure of the model includes only those
mass-forming indices that are statistically significant for
all biomass components. It has the form as:

InP; = ay, + a,; (In4) + a,, (InD) + ay; (InH) + a,; (InD)
(InH) + ag B +ag B [In (T+40)] + a, [In (T+40)] +
ag(InPR) + ay{In(T + 40)] - (InPR) (1)

where P; is biomass of i component in kg: 4 is tree
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Figure 1: Distribution of sample plots, where 1883 and 1969 trees of natural (rings) and artificial (squares) origin
correspondingly have been harvested, on the map of the mean January temperature, °C (World Weather Maps, 2007;
https://store.mapsofworld.com/image/cache/data/map_2014/currents-and-temperature-jan-enlarge-900x700.jpg).

(03 20° 40° 60° 80° 100° 120° 140° 160°

=

v voy

R e
i

R
7
Fﬁ&
0]
40°
<
)
114%% /‘H”;D/ . % . - 20°
) N\

Figure 2: Distribution of sample plots, where 1883 and 1969 trees of natural (rings) and artificial (squares) origin
correspondingly have been harvested, on the map of the mean annual precipitation, mm (World Weather Maps, 2007;
http://www.mapmost.com/world-precipitation-map/free-world-precipitation-map/).
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age in years; D is stem diameter at breast height in
cm; H is tree height in m; i is the index of biomass
component: stem over bark (P,), needles (Pf), branches
(P,) and aboveground (P ); B is the binary variable
that coordinates the biomass values of natural pines (B
= 0) and pine plantations (B = 1); T is mean January
temperature in °C and PR is mean annual precipitation
in mm.

Along with the three main mass forming variables
- tree age A, diameter D and height H of a tree, the
product of variables (InD)(InH) is introduced as an
additional predictor, the need for which was shown
earlier by Usoltsev et al. (2019). Since the mean January
temperature in the northern part of Eurasia has negative
values, the corresponding independent variable is
modified and subjected to log-log procedure as 7+40.

When we introduce only one binary variable
B in equation (1), the 3-D surface (temperature —
precipitation — biomass) in X-Y-Z coordinates shifts
between natural and artificial trees only along the Z axis

by the value of the regression coefficient at the binary
variable B. According to our assumption, the biomass of
trees in natural stands and plantations reacts differently
to changes in climate variables (Rodriguez-Vallejo and
Navarro-Cerrillo, 2019). To include these differences in
the designed model (1), along with B, we introduce the
synergisms B-[In(7 + 40)] and B-(InPR) as independent
variables. To account for the simultaneous effects of
temperature and precipitation, the synergism [In(7 +
40)]-(InPR) is introduced in equation (1) as another
independent variable.

Results

The regression coefficients of the multiple regression
equation (1) were calculated using the Statgraphics
software (see http://www.statgraphics.com/ for more
information) as shown in Table 2. The calculations were
done after the correction for logarithmic transformation
by Baskerville (1972) and anti-log transforming

Table 2: Characteristics of regression model (1) results

P, Regression models

P, 2 0143E-03 401525 D!-5284 04322 DO-1398(InH)  ,-0.14488 (T+40)*05268
P, 7 842E-05 404624 24422 12824 DO-1571(InH) 132658 (T+40) 03348
P, 6.524E-06 40179 28848 J1.6954 DO-1995(Ink) 015128 (T+40) 003438
P, 2 218E-04 40.0407 17700 01235 DO-1778(Ink) £0-25368 (T+40) 006298
P, Regression models adjR** SE*

P, (T + 40)0-6%01 PR04292 (T + 40)70-1046(InPR) 0.987 1.24

P, (T + 40)21870 PR14287 (T + 40)0-3918(0PR) 0.900 1.61

P, (T + 4024966 PRI-5638 (T + 40) 0-4007(nPR) 0.926 1.66

P, (T + 40)1-6918 PR10370 (T + 40) 02635(nPR) 0.986 1.24

* The abbreviation adjR? is a coefficient of determination adjusted for the number of parameters;

SE — equation standard error.

procedure. The synergism B(InPR) as an independent
variable was not statistically significant. All regression
coefficients of mass-forming variables in equations (1)
are characterized by the significance level of 0.05 or
better, and the resulting equations are reproducible.

The results of the equation (1) in tabular form
represent a rather awkward table. We took the calculated
data of component biomass from it for the age of 50
years, D equal to 14 cm and H equal to 13 m and built
3D-graphs of their dependence on temperature and
precipitation (Figure 3).

Since many sample trees with an estimated
belowground biomass are seven times less than the

numbers of sample trees for estimation of aboveground
biomass. It is considered that variability of below-
ground biomass estimation is higher, so we are at risk
to get wrong patterns, which are logical contradictions
(do not correspond) with the patterns shown in Figure
3. It is known that relative (dimensionless) indices are
more integrated than absolute values (Detlaf and Detlaf,
1982), hence, they are characterised by genetically
determined stability (Lyr et al., 1967). Therefore, the
regression method is used to explain the variability of
the ratio of belowground to aboveground biomass (R/S
as root: shoot ratio), rather than the absolute values of
belowground tree biomass. Initially, the structure of the



Feedback Modelling of Natural Stand and Plantation Biomass

Pa, kg

Pa, kg

300 T,°C 300 1,°C

Figure 3: Dependence of pine tree biomass in natural stands (a) and plantations (b) based on mean January temperature
(7) and mean annual precipitation (PR). Designations: Ps, Pf, Pb and Pa are, respectively, dry biomass in kg of the
stem, foliage, branches and aboveground.
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model (1) is adopted for the analysis of the R/S ratio.
But, as expected, most of the parameters of the model
(1) were not statistically significant, and the equation
finally obtained is:

R/S = 1.562D 019%(T + 40) 04666, R2 = (0.153;
SE =1.54 )

The graphical interpretation is shown in Figure 4.
Equation (2) is characterised by a fairly low coefficient
of determination since it is known that the closer
the relationship between two factors, lesser will be
the relationship explained by known determining
factors (Usoltsev, 1985). However, the Student’s
criteria determining the significance of the regression
coefficients of the model (2) are quite high and are 6.9
and 5.9, which is more than 2.0. We can see that as we
move from warm to cold climate, the absolute value
of the R/S ratio for thin trees (DBH = 8 cm) increases
from 0.17 to 0.26, and for thick trees (DBH = 32 cm)
the increase is from 0.13 to 0.20, but in percentage
terms, it does not depend on the tree size and increase
in both cases by 48%.

Discussion
From the analyses of the 3D-surfaces as shown in

Figure 3, we can distinguish two stages: first, we
note the patterns common to trees in natural stands

and plantations, and then, consider this in detail. It
is established what and how the resulting patterns of
natural trees are different from trees of plantations.

For the stem biomass, we see that it increases with
increasing precipitation as well as with increasing
temperatures in areas of insufficient moisture in all
temperature zones. But as we move to areas of sufficient
moisture, the last trend modifies.

The biomass of needles and branches increases
in a cold climate with increasing precipitation. This
tendency is also seen in areas of sufficient moisture
with a decrease of the temperature. But as we move to
areas of insufficient moisture and warm regions, these
trends show changes.

Aboveground biomass sums up component-specific
patterns by itself, amplifying the coincident ones
and neutralising (compensating) those which are
contradictory. In cold areas, there is a significant
increase in biomass with increasing precipitation, but
moving to the warm climate this trend disappears. In
humid regions, the biomass increases with the decrease
in temperature, but in water-deficient regions, the
pattern changes to the opposite trend.

After analysing differences in the biomass trends
of natural and plantation trees, it should be noted
that, judging by the structure of the obtained equation
(1), these differences are only related to changes in
temperatures, not precipitation, since the synergism

0,3

[~

b

/

-10

T,°C

Figure 4: Change of the theoretical R/S ratio in relation to tree stem diameter
under different mean January temperature (7).
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B-(InPR) was not statistically significant. The biomass
of all components of plantation trees is higher than
that of natural forest, but the percentage of this excess
is different for different components and changes at
different levels to changing temperature. Changes in
the excess of biomass components of plantation trees
over natural forests are shown in Table 3.

The table shows that as the move is from cold to
warm climate, the increase in tree biomass of plantation
over natural forest increases from 1.3 to 5.3% for stem
biomass, decreases from 28 to 6% for foliage biomass,
as well as from 4.8 to 2.1% and from 6.3 to 1.5%
for branches and aboveground biomass, respectively,
regardless of the precipitation level.

However, the most interesting question is how
much the forest biomass will change with assumed
deviations in temperature, for example, by 1°C and
with a deviation in precipitation from the usual norm,
for example, by 100 mm per year. The constructed
model answers such question to single-trees. To do this,
we consider the first derivative of our 3-dimensional
surfaces (Figure 3), graphically, not analytically i.e.,
we take off the biomass difference interval (A, %%)
corresponding to temperature interval at 1°C and
precipitation interval 100 mm directly from the graphs
or the corresponding tables, and get the answer in the
form of three-dimensional surfaces, divided into plus
and minus areas that correspond to the increase or
decrease in the biomass of trees having the fixed age
of 50 years, DBH of 14 cm and height of 13 m.

In this case, the differences between the biomass of
natural forest and plantation trees become more obvious
as shown in Figure 5. If the stem biomass of plantation
trees increases as the temperature rises by 1°C over
the entire precipitation range from 300 to 900 mm (the
entire 3D surface is located above the zero planes), then
the biomass of natural trees ranging from 300 to 700
mm (located above the zero planes), and in the range
of 700 to 900 mm will be decreased (located below
the zero planes).

23

The foliage biomass, in this case, decreases over the
entire range of precipitation from 300 to 900 mm, both
in natural forest and plantation trees (the entire surface
is located below the zero plane), but the percentage of
decrease in the plantation trees is greater than in the
natural forest.

In terms of variations in the branch biomass, when
the temperature assumes to increase by 1°C, natural
and plantation trees do not differ significantly and an
increase in the precipitation range from 300 to 500 mm
and a decrease in the range from 500 to 900 mm can
be observed.

When the temperature increases by 1°C, there is
also a slight difference between natural and plantation
trees in the aboveground biomass variations: the former
increase in the precipitation range from 300 to 600 mm,
and the latter increases in the range from 300 to 500
mm only.

When annual precipitation assumes to be increased
by 100 mm at constant temperatures of January, then
the aboveground biomass of stems, branches increases
in all temperature zones, and the foliage biomass only
increase in the range of temperature zones from —20°C
to —2°C, for both natural forest and plantation trees as
shown in Figure 6.

The similar modification of Figure 4 for the R/S ratio
is shown in Figure 7. If the overall decrease in R/S ratio
during the transition from cold to warm climate was
48%, then the decrease in R/S ratio “at the point”, i.e.,
when shifting in the same manner by 1°C, was from
—2.3% to —1.0%, regardless of the thickness of tree
stems and their origin.

It is known that the solution to each new problem
and the corresponding removal of the associated
uncertainties generates several new issues. In our case,
some uncertainties have arisen too:

1. The patterns of biomass amount change under
assumed changes in climatic conditions as shown in

Table 3: Change in the excess percentage of different components biomass of plantation trees
over natural trees due to variation in temperature of January

Biomass Mean temperature of January, °C
component 20  -16 -12 -8 —4 0 4
Stems 1.3 2.2 3.0 3.7 43 4.8 53
Foliage 27.7 23.1 19.1 15.4 12.0 8.8 59
Branches 4.8 4.2 3.6 3.2 2.8 2.5 2.1
Above ground 6.3 5.2 4.3 3.5 2.8 2.1 1.5
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L°C

Figure 5: Change in tree biomass when temperature assumes to be increased by 1°C due to the expected

climate change at temperature and precipitation. Symbols As, Af, Ab and Aa on the coordinate axes means

the change (£ %) in biomass of stems, foliage, branches and aboveground, respectively, with the temperature
increase by 1°C at the constant precipitation.
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Figure 6: Change of tree biomass when precipitation assumes to be increased by 100 mm due to the expected

climate change at different temperatures and precipitation. The symbols As, Af, Ab and Aa along the coordinate

axes represent the change (+%) in aboveground biomass of stems, foliage, branches, respectively, with precipitation
increase by 100 mm and at the constant mean temperatures of January.

Figure 7: Change of R/S ratio when temperature assumes
to be increased by 1°C due to the expected climate change
at different temperatures.

Figures 5 and 6 are hypothetical. They reflect long-
term adaptive responses of forest stands to regional
climatic conditions and do not take into account
the rapid trends of current environmental changes,
which shows serious constraints on the ability
of forests to adapt the new climatic conditions
(Givnish, 2002; Alcamo et al., 2007; Berner et al.,
2013; Schaphoft et al., 2016; Spathelf et al., 2018;
Vasseur et al., 2018; DelLeo et al., 2019; Denney
and Anderson, 2019). The law of limiting factors
(Liebig, 1840; Shelford, 1913) works well in static
conditions. With a rapid change in limiting factors
(such as air temperature or precipitation), forest
ecosystems in a transitional (non-stationary) state,
in which some factors that were still not significant
may come to the fore, and the result may be
determined by other limiting factors (Odum, 1975).
2. A disadvantage of the database used in this study
is the uneven spatial distribution and different
representations of sampling sites for natural and
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plantation trees over Eurasia as shown in Figures
1 and 2 and Table 1. In the regression analysis of
biomass data we used the least-squares method, it
estimates of biomass in ecoregions with a minimum
number of sampling sites may be biased due to the
greater “information weight” of ecoregions with the
largest number of sampling sites. Methodological
uncertainties causing biases in biomass amounts
in parts of the individual tree may also affect the
accuracy of the estimates.

3. The response of forests to climate change also
depends on whether the photosynthetic benefits
from increased atmospheric CO, compensates
for increased physiological stresses from higher
temperatures or not (Sperry, 2019). For example,
moderate temperature rise (3°C) along with rising
CO, concentration can increase net photosynthesis
of plant population but can decrease biomass
production because of increased respiration.
However, an increase in temperature by 6°C
can decrease both photosynthesis and biomass
production, regardless of species’ optimal
temperature (Gustafson et al., 2017). There is a
problem related to the associated effects with the
simultaneous interaction of various factors (Pucko
et al., 2011; Gray and Brady, 2016; Gustafson et
al., 2017).

4. In equations (1), three mass-determining factors (4,
D, and H) cover most of the explained variations:
for the biomass of stem, needles, branches, and
aboveground which are 94, 86, 91, and 87%,
respectively. Climate variables and differences
between natural forest and plantation trees account
for only 6 to 13% of the variability. The structure
of these “residual” variables is highly variable and
heterogeneous. In addition, to the already noted
uneven filling the initial data matrix, there are
discrepancies between the age periods of mapping
as shown in Figures 1 and 2, and calendar ages of
different biomass components, between the large
step of temperature and precipitation isolines on the
maps and local topography features, as well as local
soil differences, despite the fact that the soil zoning
reflects the action of climatic factors (Dokuchaev,
1948; Rukhovich et al., 2019).

Taking into account the stated methodological and
conceptual uncertainties, the results presented in this
study provide a solution to the problem only in the first
approximation and should be considered as preliminary
ones and having not so much factual as methodological

significance. They can be modified if the biomass
database will be enhanced by additional data, mainly
site-specific and strand-specific characteristics as well
as by more advanced methodology.

Conclusions

The database compilation of natural forest and
plantation of single-trees concludes that the above-
ground and stem biomass of equal-sized and equal-aged
natural forest and plantation trees increases with the rise
of temperature in January and annual precipitation. This
pattern is partially valid for the branches’ biomass, and it
has a specific character for the foliage one. The biomass
components of plantation trees are higher than that of
natural forest, but the percentage of excess biomass
varies among different components and depends on
the level of January’s temperatures. However, it does
not depend on the level of annual precipitation. As one
moves from cold to warm climate, the excess biomass
of plantation tree over natural forest increases from 1.3
to 5.3% in stem biomass, it decreases from 28 to 6%
for foliage biomass, as well as from 4.8 to 2.1% and
6.3 to 1.5% for branches and aboveground biomass,
respectively, regardless of the precipitation level. As one
moves from warm to cold climate, the absolute value
of the root: shoot (R/S) ratio for small trees (DBH = 8
cm) increases from 0.17 to 0.26, and for big trees (DBH
=32 cm) from 0.13 to 0.20. In terms of percentage, it
does not depend on the stem size and increases by 48%.
The results presented can be accounted for as the first
approximation only.
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