

Journal of Climate Change, Vol. 6, No. 2 (2020), pp. 15-32. DOI 10.3233/JCC200009

Feedback Modelling of Natural Stand and Plantation Biomass to Changes in Climatic Factors (Temperatures and Precipitation): A Special Case for Two-needles Pines in Eurasia

Vladimir Andreevich Usoltsev^{1,2}, Seyed Omid Reza Shobairi^{1*} and Ivan Stepanovich Tsepordey²

¹Ural State Forest Engineering University Sibirskii Trakt Str., 37, Yekaterinburg, 620100 Russian Federation

²Botanical Garden, Russian Academy of Sciences, Ural Branch, 8 Marta Str., 202a

Yekaterinburg, 620144 Russian Federation

☑ Omidshobeyri214@gmail.com

Received April 10, 2020; revised and accepted July 17, 2020

Abstract: A comparative discussion on advantages and disadvantages of natural stands and plantations, including their productivity and resistance, began from the moment of first forest plantings and continues to this day. In the context, progressive replacement of natural forests by plantations, the question of how that will change the carbon storage capacity of forest cover when replacing natural forests with planted ones in a changing climate becomes extremely relevant. This article presents the first attempt to answer this question at the transcontinental level on a special case for two-needles pine trees (subgenus Pinus L.). The research was carried out using the database compiled by the authors on the tree biomass allocation structure for major tree species of Eurasia, in particular, the 1880 and 1967 data of naturally regenerated and planted sample pine trees, respectively. Multifactor regression models were calculated after combining the matrix of initial data on the structure of tree biomass with the mean temperature of January and mean annual precipitation; their adequacy indices allow us to consider them reproducible. It is found that the aboveground biomass of equal-sized and equal-aged natural and planted trees increases with the rise in the temperature in the month of January and annual precipitation. This pattern is only partially valid for the branches' biomass. Iit has a specific character for the foliage one. The biomass of all components of planted trees is higher than that of natural trees, but the percentage excess varies among different components and depends on the level of January's temperature, but does not depend at all on the level of annual precipitation. The uncertainties of estimations, as well as the nature of the obtained regularities, are discussed in the text.

Keywords: Two-needles pine trees; Natural stands and plantations; Regression models; Biomass equations; Mean January temperature; Annual precipitation.

Introduction

The current climate makes it increasingly important to assess the response of forest biomass to the changes in the environment, which, in turn, determines the possibility of climate stabilisation by reducing atmospheric CO₂. Climate change projections have been linked to significant increases in water deficits and natural disturbance regimes in forest ecosystems across many parts of the world during the 21st century

(Clark et al., 2016). Climate change may lead to substantial drought on large territories of Siberian forest ecosystems, and increase global warming (Shvidenko et al., 2013). This is compounded by anthropogenic pressure and lack of governance in Russia (Onuchin et al., 2009).

Some researchers have argued that by increasing the total area, the world's forests could store around one-quarter of the atmospheric CO₂ necessary to limit global warming upto 1.5°C above pre-industrial levels (Lewis et al., 2019). Nevertheless, others consider it almost unreal (Boysen et al., 2017). A study by Sedjo and Solomon (1989) indicates that the current annual increase in atmospheric carbon could be sequestered for about 30 years in approximately 465 million ha of plantation forests. As Ciesla (1995) believes, this would require increasing more than 10% of the current area of forests present on earth. It would also represent increasing more than four times the present plantation area globally, but there are no suitable areas on such scale.

Mackey (2014) states: "Half the world's natural forests have already been cleared. Only about a quarter of what is left retains its carbon-carrying capacity". The planet's natural forests are slowly decreasing by 6-13 million ha annually (FAO, 2006; Kirilenko and Sedjo, 2007), and are often replaced by artificial ones (Niskanen, 2000). This accounts for 4% of the world's forests, which is growing continuously (Brockerhoff et al., 2008; Pawson et al., 2013). It is necessary to know how this substitution can affect the change in the biomass structure of the artificial forests under the influence of climate shifts and, accordingly, their carbon-depositing capacity and resilience to climate change (Pawson et al., 2013).

Because climate change affects the natural environment, established as a result of the long-term evolution of vegetation (Emanuel et al., 1985; Kobak, Kondrasheva, 1992; Mäkipää et al., 2015; Kosanic et al., 2018; Roberts, 2019). This certainly causes changes in plant cover productivity (Kobak and Kondrasheva, 1985; Dulamsuren et al., 2013; Bennett et al., 2016; Schaphoff et al., 2016; Fang et al., 2016; Duan et al., 2018), as well as the accelerated successional changes and dominate species in their process (Bolte et al., 2014). To predict the impact of climate change on forest productivity, it is necessary to know the relationship of forest biomass with climate indices (Stegen et al., 2011; Dymond et al., 2016).

Since it is well known that man-made forests have low environmental sustainability, especially near the ecological limits of the species distribution, a large number of studies have been dedicated to analyse the causes for low sustainability (Maksimov, 1944; Karpov, 1950; Berezyuk, 1959; Godney, 1965; Nevzorov, 1970; Godnev and Nevzorov, 1970; Antsiferov et al., 1971; Mironov, 1977; Sidorov et al., 1978; Makarenko and Biryukova, 1982; Biryukova and Makarenko, 1983; Biryukova and Biryukov, 1984; Usoltsev, 1985; Yuodvalkis and Jonikas, 1985; Verzunov, 1987; Yang et al., 2004; Li et al., 2011; Maurer and Pinchuk, 2014; Navarro-Cerrillo et al., 2018). On the other hand, manmade forests, as compared to natural forests, fit better for the concept of adaptive forest management (Nabuurs et al., 2007). Today, in the context of increasing anthropogenic pressure and climate change, it is important to know all the advantages and disadvantages of both natural stands and plantations in terms of biological productivity and their ability to mitigate climate change.

Natural and artificial stands differ in many aspects: biomass and production component increase in a chronosequence (Jordan and Farnworth, 1982; Usoltsev, 1985, 1988; Gabeev, 1990; Usoltsev and Vanclay, 1993, 1995; Usoltsev et al., 1994), single-tree biomass allometry (Usoltsev, 2016; Durkaya et al., 2016) involving its additive case (Usoltsev et al., 2017), resistance to droughts (Khonin, 1974; Makarenko and Biryukova, 1982; Biryukova and Makarenko, 1983; Usoltsev, 1985; Verzunov, 1987; Usoltsev and Vanclay, 1993, 1995; Usoltsev et al., 1994; Bell et al., 2015; Navarro-Cerrillo et al., 2018; Rodriguez-Vallejo and Navarro-Cerrillo, 2019), fine root distribution, seasonal pattern and production (Yang et al., 2004), characteristics of the macrostructure of wood (Melekhov et al., 2003; Antonov, 2007), technological properties of wood, in particular, sliced veneer quality (Tekpetey et al., 2014), tree genetic similarity (Gauli et al., 2009), variability of morphological markers of the reproductive organs (Mazhula, 2018), species diversity (Sobuj, 2011), species composition, individual tree distribution, and competitive relationships (Gao et al., 2014), pollinator abundance in crop fields (Taki et al., 2011), reaction to a mass outbreak of parasites (Grabenweger et al., 2005), biomass structure in air pollution gradients near copper plants (Yusupov et al., 1997; Usoltsev et al., 2012), dynamic structural stand density diagrams (Usoltsev and Vanclay, 1995; Stankova and Diéguez-Aranda, 2020).

Discussions on the production advantages of natural and artificial forests were initiated from the first forest plantation and continuesuntil now. Numerous studies proved the presence of higher production indices of plantations as compared to natural stands. (Rubtsov et al., 1976; Stage et al., 1988; Gabeev, 1990; Danchenko et al., 1991; Chernov, 2001; Antonov, 2007; Lugansky and Shipitsina, 2008; Merzlenko, 2017; Usoltsev et al., 2017). Nevertheless, pieces of evidence were found for greater biological productivity of plantations at a young age (Zolotukhin, 1966; Makarenko and Biryukova, 1982; Jordan and Farnworth, 1982; Polyakov et al., 1986; Romanov et al., 2014). The plantations also showed greater biological productivity of natural forests as compared to planted forests in Southeast China (Liu et al., 2016). Climate change increases this uncertainty, and a comparative analysis of possible changes in the biomass of natural stands and plantations, as a result of climate shifts, becomes even more relevant.

Recently, a comparative analysis for the accuracy of different methods for determining the biological productivity of some tree species was completed. The results showed that allometric models designed at a tree scale gave a smaller prediction error as compared to models performed at the forest stand scale (Zeng et al., 2018). Such single-tree allometric models for mixed stands are particularly relevant. A climate-sensitive aboveground biomass model led to a higher prediction accuracy of tree biomass than those without climatic variables for three larch species (Fu et al., 2017). A study was performed on the sensitivity of allometric models for aboveground and belowground biomass of larches in China to changes in hydrothermal conditions. It revealed that the increase in mean annual temperature by 1°C leads to an increase in aboveground biomass of trees to 0.87% and reduce belowground biomass to 2.26%. The increase in average annual precipitation by 100 mm causes a decrease in aboveground and belowground biomasses at 1.52 and 1.09%, respectively (Zeng et al., 2017). In such studies, the task is to extract the climatic component (climate signals) from the residual dispersion of a model calculated. To know about climatic factors and make them "recoverable" from this "information noise", it is necessary to consider the tree in the model, in addition to the stem diameter and height, which is an important factor for determining the structure of tree biomass (Nikitin, 1965; Kazaryan, 1966; Usoltsev, 1972; Tsel'niker, 1994; Vanninen et al., 1996; Bond-Lamberty et al., 2002; Genet et al., 2011; Fatemi et al., 2011; Ochał et al., 2013; Qiu et al., 2018), as well as climate sensitivity (Carrer and Urbinati, 2004; Yu et al., 2008).

In our study, the first attempt is to compare the changes in the component of tree biomass composition of two-needles pines of natural and artificial stands by trans-Eurasian hydrothermal gradients using the unique Eurasian database of, harvest data on single tree biomass compiled by V.A. Usoltsev (2016). As climatic variables are geographically known, it can be expected that the improvement of allometric biomass models, considering not only the age, height and stem diameter as independent variables and also climate indices, will allow to identify and quantify some changes in the biomass structure of equal-aged and equal-sized trees related to climate variables and will provide climatesensitivity of such models (Forrester et al., 2017; Zeng et al., 2017; Fu et al., 2017). The implementation of our intention is encouraged by the result of Rodriguez-Vallejo and Navarro-Cerrillo (2019) showed that climatic variables (temperature and precipitation), as well as site and soil conditions, cause differences in the forest cover change between natural and planted stands.

Material and Methods

From the mentioned database, the data for the subgenus *Pinus* L. aboveground biomass in a number of 2628 sample trees, including 1980 and 1967 for natural and artificial stands respectively, were taken (Table 1). There were only 370 definitions for root biomass in the database. The subgenus *Pinus* L. is mainly represented by the Scots pine (*Pinus sylvestris* L.) (86 % of the total data) and in a smaller number by species *P. tabuliformis* Carr., *P. massoniana* Lamb., *P. densiflora* S. et Z., *P. thunbergii* Parl.

The joint analysis of different species is caused by the impossibility of growing the same tree species throughout Eurasia. As a result of which their areas within the genus are confined to certain ecoregions. These are substitutive or vicariate species that arose in cases of geologically long-standing separation of a once-continuous area under influence of climate traits (Tolmachev, 1962) or as a result of climate-related morphogenesis (Chernyshev, 1974).

Sample plots for tree biomass estimations are plotted against the mean January temperature (Figure 1) and mean annual precipitation (Figure 2). The use of evapotranspiration as a combined index in the assessment of tree production is useless since it explains only 24% of its variability compared to 42%, which shows its relation to mean annual precipitation, and compared to 31%, which provides the relation to mean annual temperature (Ni et al., 2001). Therefore, the use of temperature and precipitation indices taken from World Weather Maps (2007) are preferable as one of the most informative climatic factors.

Table 1: Distribution of the 2628 sample trees by species, countries, regions and mensuration indices

Region	Species of the		Number of		
	subgenus Pinus L.	Age, yrs	Age, yrs DBH, cm		sample trees
	Trees	in Natural Forest	t		
West Europa	P. sylvestris L.	11 ÷ 100	1.4 ÷ 53.1	2.3 ÷ 32.0	19
Scandinavia	P. sylvestris L.	9 ÷ 212	$1.9 \div 42.0$	$3.3 \div 32.4$	117
The Ukraine and Byelorussia	P. sylvestris L.	24 ÷ 186	$1.5 \div 54.6$	$1.6 \div 36.6$	205
European Russia	P. sylvestris L.	$10 \div 207$	$0.9 \div 54.0$	$2.2 \div 30.2$	514
Turgay deflection	P. sylvestris L.	13 ÷ 110	$0.3 \div 47.8$	$1.4 \div 27.4$	411
Central Siberia	P. sylvestris L.	4 ÷ 430	$0.5 \div 65.6$	$1.6 \div 28.8$	587
China	P. sylvestris L. P. massoniana Lamb.	20 ÷ 100	8.0 ÷ 22.3	10.4 ÷ 19.0	9
Japan	P. densiflora S. et Z. P. thunbergii Parl.	22 ÷ 120	9.0 ÷ 60.9	9.5 ÷ 25.7	18
Total	_				1880
	Tree	s in Plantations			
West and Central Europa	P. sylvestris L.	7 ÷ 50	$0.5 \div 36.5$	1.4 ÷ 21.0	77
Scandinavia	P. sylvestris L.	$5 \div 143$ $1.2 \div 37.1$		$2.1 \div 25.6$	196
The Ukraine and Byelorussia	P. sylvestris L.	8 ÷ 90	$2.1 \div 42.9$	$2.2 \div 34.7$	1010
European Russia	P. sylvestris L.	6 ÷ 78	$1.5 \div 30.1$	$1.8 \div 32.6$	160
Turgay deflection	P. sylvestris L.	9 ÷ 50	$0.4 \div 21.7$	$1.4 \div 16.2$	215
Central Siberia	P. sylvestris L.	$10 \div 73$	$2.0 \div 36.0$	$2.4 \div 21.6$	170
Iraq	P. halepensis Mill.	24	15.8	7.4	1
China	P. tabuliformis Carr.	17 ÷ 25	$4.0 \div 12.0$	$3.3 \div 10.8$	8
Japan	P. densiflora S. et Z. P. thunbergii Parl.	3 ÷ 53	1.7 ÷ 39.1	2.0 ÷ 18.7	130
Total					1967

Summer temperature is the greatest contributor that can explain the variations from 16% (Berner et al., 2013) to 50% (Bouriaud et al., 2005) of the total dispersion by estimating the stem biomass growth, using tree rings width. Moreover, the accurate relationship (positive or negative) of stand biomass depends on intra-annual temperature which was taken as a predictor. According to research by Khan et al. (2019), the relation of stand biomass is positive with the maximum intraannual temperature and negative with the minimum or average annual temperature. With an inter-annual time step, the influence of summer temperature is more pronounced (Zubairov et al., 2018). But in long-term perspective, the prevailing influence is acquired by winter temperatures (Morley et al., 2017), as in the 20th century, winter temperatures in the Northern hemisphere are changing faster than summer temperatures (Emanuel

et al., 1985; Folland et al., 2001; Laing and Binyamin, 2013; Felton et al., 2016). In terms of regression analysis, the comparison of weak temporal trend of summer temperatures and a steep trend of winter temperatures shows a smaller regression slope and a worse ratio of residual variance to the total variance by this regression. Taking the mean winter temperature as one of the independent variables, we get a more reliable dependence with a higher predictive ability.

The final structure of the model includes only those mass-forming indices that are statistically significant for all biomass components. It has the form as:

$$\begin{aligned} \ln P_i &= a_{0i} + a_{1i} (\ln A) + a_{2i} (\ln D) + a_{3i} (\ln H) + a_{4i} (\ln D) \\ & (\ln H) + a_{5i} B + a_{6i} B \left[\ln (T + 40) \right] + a_{7i} [\ln (T + 40)] + \\ & a_{8i} (\ln PR) + a_{9i} [\ln (T + 40)] \cdot (\ln PR) \end{aligned} \tag{1}$$

where P_i is biomass of i^{th} component in kg: A is tree

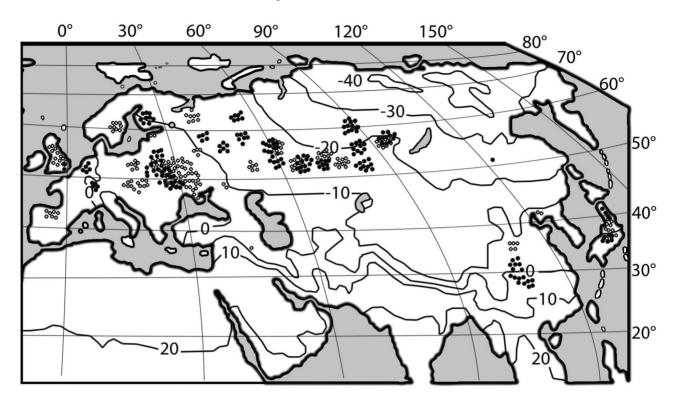


Figure 1: Distribution of sample plots, where 1883 and 1969 trees of natural (rings) and artificial (squares) origin correspondingly have been harvested, on the map of the mean January temperature, °C (World Weather Maps, 2007; https://store.mapsofworld.com/image/cache/data/map 2014/currents-and-temperature-jan-enlarge-900x700.jpg).

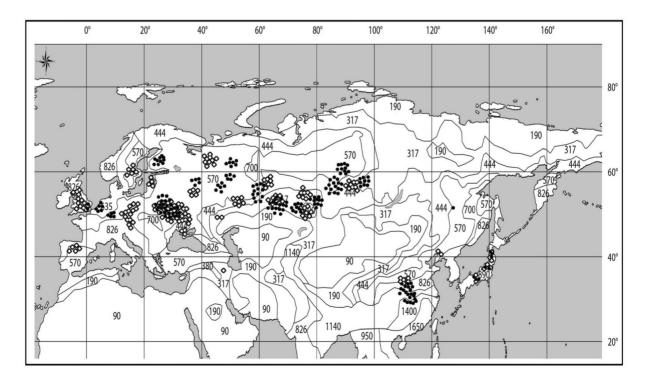


Figure 2: Distribution of sample plots, where 1883 and 1969 trees of natural (rings) and artificial (squares) origin correspondingly have been harvested, on the map of the mean annual precipitation, mm (World Weather Maps, 2007; http://www.mapmost.com/world-precipitation-map/free-world-precipitation-map/).

age in years; D is stem diameter at breast height in cm; H is tree height in m; i is the index of biomass component: stem over bark (P_s) , needles (P_f) , branches (P_b) and aboveground (P_a) ; B is the binary variable that coordinates the biomass values of natural pines (B = 0) and pine plantations (B = 1); T is mean January temperature in °C and PR is mean annual precipitation in mm.

Along with the three main mass forming variables - tree age A, diameter D and height H of a tree, the product of variables $(\ln D)(\ln H)$ is introduced as an additional predictor, the need for which was shown earlier by Usoltsev et al. (2019). Since the mean January temperature in the northern part of Eurasia has negative values, the corresponding independent variable is modified and subjected to log-log procedure as T+40.

When we introduce only one binary variable B in equation (1), the 3-D surface (temperature – precipitation – biomass) in X-Y-Z coordinates shifts between natural and artificial trees only along the Z axis

by the value of the regression coefficient at the binary variable B. According to our assumption, the biomass of trees in natural stands and plantations reacts differently to changes in climate variables (Rodriguez-Vallejo and Navarro-Cerrillo, 2019). To include these differences in the designed model (1), along with B, we introduce the synergisms $B \cdot [\ln(T + 40)]$ and $B \cdot (\ln PR)$ as independent variables. To account for the simultaneous effects of temperature and precipitation, the synergism $[\ln(T + 40)] \cdot (\ln PR)$ is introduced in equation (1) as another independent variable.

Results

The regression coefficients of the multiple regression equation (1) were calculated using the Statgraphics software (see http://www.statgraphics.com/ for more information) as shown in Table 2. The calculations were done after the correction for logarithmic transformation by Baskerville (1972) and anti-log transforming

P_{i}	Regression mo	dels					
$\overline{P_s}$	2.0143E-03	$A^{0.1525}$	$D^{1.5284}$	$H^{0.4322}$	$D^{0.1398(\ln H)}$	$e^{-0.1448B}$	$(T+40)^{0.0526B}$
P_f	7.842E-05	$A^{-0.4624}$	$D^{2.4422}$	$H^{-1.2824}$	$D^{0.1571(\ln H)}$	$e^{1.3265B}$	$(T+40)^{-0.3345B}$
P_b	6.524E-06	$A^{-0.1796}$	$D^{2.8848}$	$H^{-1.6954}$	$D^{0.1995(\ln H)}$	$e^{0.1512B}$	$(T+40)^{-0.0343B}$
P_a	2.218E-04	$A^{0.0407}$	$D^{1.7700}$	$H^{-0.1235}$	$D^{0.1778(\ln H)}$	$e^{0.2536B}$	$(T+40)^{-0.0629B}$
P_i	Regression model	ls		$adjR^2*$	SE*		
P_s	$(T+40)^{0.6901}$	$PR^{0.4292}$	$(T+40)^{-0.1046(\ln PR)}$	0.987	1.24		
P_f	$(T+40)^{2.1870}$	$PR^{1.4287}$	$(T+40)^{-0.3918(\ln PR)}$	0.900	1.61		
P_b	$(T+40)^{2.4966}$	$PR^{1.5638}$	$(T+40)^{-0.4007(\ln PR)}$	0.926	1.66		
P_a	$(T+40)^{1.6918}$	$PR^{1.0370}$	$(T+40)^{-0.2635(\ln PR)}$	0.986	1.24		

Table 2: Characteristics of regression model (1) results

procedure. The synergism $B(\ln PR)$ as an independent variable was not statistically significant. All regression coefficients of mass-forming variables in equations (1) are characterized by the significance level of 0.05 or better, and the resulting equations are reproducible.

The results of the equation (1) in tabular form represent a rather awkward table. We took the calculated data of component biomass from it for the age of 50 years, D equal to 14 cm and H equal to 13 m and built 3D-graphs of their dependence on temperature and precipitation (Figure 3).

Since many sample trees with an estimated belowground biomass are seven times less than the numbers of sample trees for estimation of aboveground biomass. It is considered that variability of belowground biomass estimation is higher, so we are at risk to get wrong patterns, which are logical contradictions (do not correspond) with the patterns shown in Figure 3. It is known that relative (dimensionless) indices are more integrated than absolute values (Detlaf and Detlaf, 1982), hence, they are characterised by genetically determined stability (Lyr et al., 1967). Therefore, the regression method is used to explain the variability of the ratio of belowground to aboveground biomass (*R/S* as root: shoot ratio), rather than the absolute values of belowground tree biomass. Initially, the structure of the

^{*} The abbreviation $adjR^2$ is a coefficient of determination adjusted for the number of parameters; SE – equation standard error.

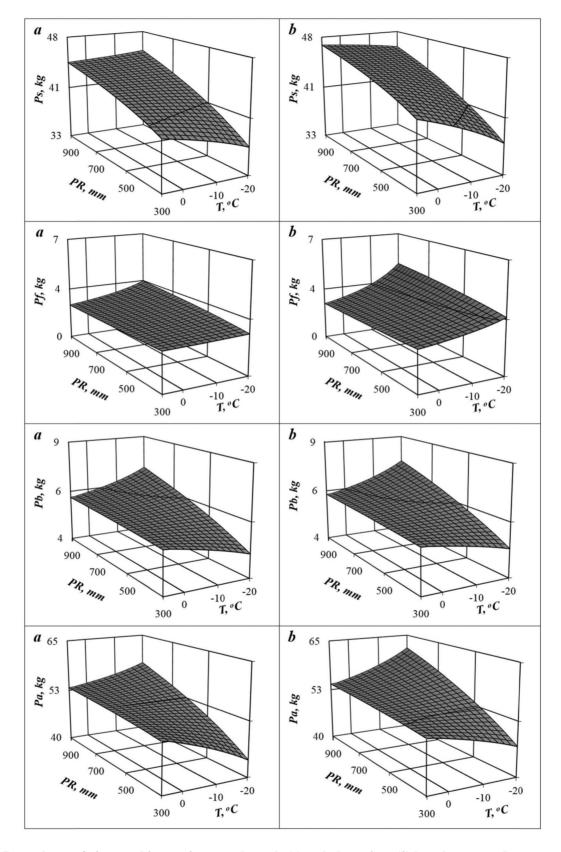


Figure 3: Dependence of pine tree biomass in natural stands (a) and plantations (b) based on mean January temperature (T) and mean annual precipitation (PR). Designations: Ps, Pf, Pb and Pa are, respectively, dry biomass in kg of the stem, foliage, branches and aboveground.

model (1) is adopted for the analysis of the *R/S* ratio. But, as expected, most of the parameters of the model (1) were not statistically significant, and the equation finally obtained is:

$$R/S = 1.562D^{-0.1949}(T+40)^{-0.4666}; R^2 = 0.153;$$

 $SE = 1.54$ (2)

The graphical interpretation is shown in Figure 4. Equation (2) is characterised by a fairly low coefficient of determination since it is known that the closer the relationship between two factors, lesser will be the relationship explained by known determining factors (Usoltsev, 1985). However, the Student's criteria determining the significance of the regression coefficients of the model (2) are quite high and are 6.9 and 5.9, which is more than 2.0. We can see that as we move from warm to cold climate, the absolute value of the *R/S* ratio for thin trees (DBH = 8 cm) increases from 0.17 to 0.26, and for thick trees (DBH = 32 cm) the increase is from 0.13 to 0.20, but in percentage terms, it does not depend on the tree size and increase in both cases by 48%.

Discussion

From the analyses of the 3D-surfaces as shown in Figure 3, we can distinguish two stages: first, we note the patterns common to trees in natural stands

and plantations, and then, consider this in detail. It is established what and how the resulting patterns of natural trees are different from trees of plantations.

For the stem biomass, we see that it increases with increasing precipitation as well as with increasing temperatures in areas of insufficient moisture in all temperature zones. But as we move to areas of sufficient moisture, the last trend modifies.

The biomass of needles and branches increases in a cold climate with increasing precipitation. This tendency is also seen in areas of sufficient moisture with a decrease of the temperature. But as we move to areas of insufficient moisture and warm regions, these trends show changes.

Aboveground biomass sums up component-specific patterns by itself, amplifying the coincident ones and neutralising (compensating) those which are contradictory. In cold areas, there is a significant increase in biomass with increasing precipitation, but moving to the warm climate this trend disappears. In humid regions, the biomass increases with the decrease in temperature, but in water-deficient regions, the pattern changes to the opposite trend.

After analysing differences in the biomass trends of natural and plantation trees, it should be noted that, judging by the structure of the obtained equation (1), these differences are only related to changes in temperatures, not precipitation, since the synergism

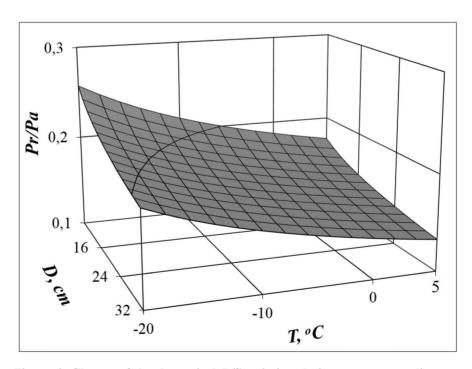


Figure 4: Change of the theoretical R/S ratio in relation to tree stem diameter under different mean January temperature (T).

 $B \cdot (\ln PR)$ was not statistically significant. The biomass of all components of plantation trees is higher than that of natural forest, but the percentage of this excess is different for different components and changes at different levels to changing temperature. Changes in the excess of biomass components of plantation trees over natural forests are shown in Table 3.

The table shows that as the move is from cold to warm climate, the increase in tree biomass of plantation over natural forest increases from 1.3 to 5.3% for stem biomass, decreases from 28 to 6% for foliage biomass, as well as from 4.8 to 2.1% and from 6.3 to 1.5% for branches and aboveground biomass, respectively, regardless of the precipitation level.

However, the most interesting question is how much the forest biomass will change with assumed deviations in temperature, for example, by 1°C and with a deviation in precipitation from the usual norm, for example, by 100 mm per year. The constructed model answers such question to single-trees. To do this, we consider the first derivative of our 3-dimensional surfaces (Figure 3), graphically, not analytically i.e., we take off the biomass difference interval $(\Delta, \%\%)$ corresponding to temperature interval at 1°C and precipitation interval 100 mm directly from the graphs or the corresponding tables, and get the answer in the form of three-dimensional surfaces, divided into plus and minus areas that correspond to the increase or decrease in the biomass of trees having the fixed age of 50 years, DBH of 14 cm and height of 13 m.

In this case, the differences between the biomass of natural forest and plantation trees become more obvious as shown in Figure 5. If the stem biomass of plantation trees increases as the temperature rises by 1°C over the entire precipitation range from 300 to 900 mm (the entire 3D surface is located above the zero planes), then the biomass of natural trees ranging from 300 to 700 mm (located above the zero planes), and in the range of 700 to 900 mm will be decreased (located below the zero planes).

The foliage biomass, in this case, decreases over the entire range of precipitation from 300 to 900 mm, both in natural forest and plantation trees (the entire surface is located below the zero plane), but the percentage of decrease in the plantation trees is greater than in the natural forest.

In terms of variations in the branch biomass, when the temperature assumes to increase by 1°C, natural and plantation trees do not differ significantly and an increase in the precipitation range from 300 to 500 mm and a decrease in the range from 500 to 900 mm can be observed.

When the temperature increases by 1°C, there is also a slight difference between natural and plantation trees in the aboveground biomass variations: the former increase in the precipitation range from 300 to 600 mm, and the latter increases in the range from 300 to 500 mm only.

When annual precipitation assumes to be increased by 100 mm at constant temperatures of January, then the aboveground biomass of stems, branches increases in all temperature zones, and the foliage biomass only increase in the range of temperature zones from -20° C to -2° C, for both natural forest and plantation trees as shown in Figure 6.

The similar modification of Figure 4 for the R/S ratio is shown in Figure 7. If the overall decrease in R/S ratio during the transition from cold to warm climate was 48%, then the decrease in R/S ratio "at the point", i.e., when shifting in the same manner by 1°C, was from -2.3% to -1.0%, regardless of the thickness of tree stems and their origin.

It is known that the solution to each new problem and the corresponding removal of the associated uncertainties generates several new issues. In our case, some uncertainties have arisen too:

1. The patterns of biomass amount change under assumed changes in climatic conditions as shown in

Table 3: Change in the excess percentage of different components biomass of plantation trees over natural trees due to variation in temperature of January

Biomass	Mean temperature of January, °C						
component	-20	-16	-12	-8	-4	0	4
Stems	1.3	2.2	3.0	3.7	4.3	4.8	5.3
Foliage	27.7	23.1	19.1	15.4	12.0	8.8	5.9
Branches	4.8	4.2	3.6	3.2	2.8	2.5	2.1
Above ground	6.3	5.2	4.3	3.5	2.8	2.1	1.5

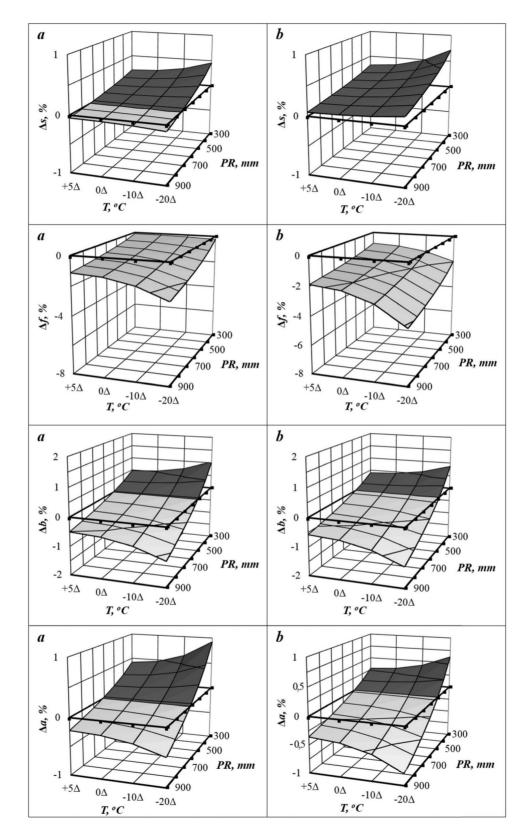


Figure 5: Change in tree biomass when temperature assumes to be increased by 1°C due to the expected climate change at temperature and precipitation. Symbols Δs , Δf , Δb and Δa on the coordinate axes means the change (± %) in biomass of stems, foliage, branches and aboveground, respectively, with the temperature increase by 1°C at the constant precipitation.

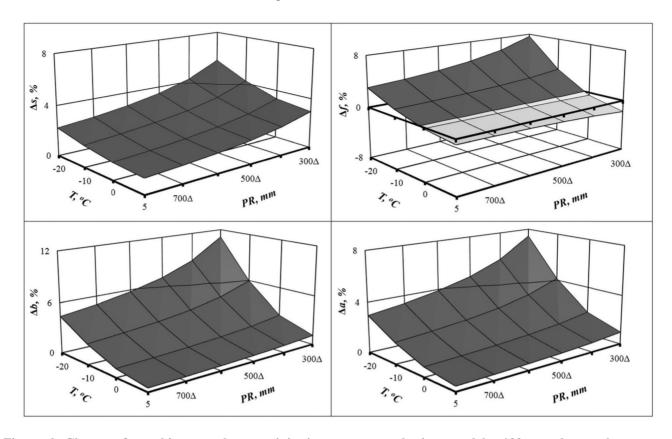


Figure 6: Change of tree biomass when precipitation assumes to be increased by 100 mm due to the expected climate change at different temperatures and precipitation. The symbols Δs , Δf , Δb and Δa along the coordinate axes represent the change (±%) in aboveground biomass of stems, foliage, branches, respectively, with precipitation increase by 100 mm and at the constant mean temperatures of January.

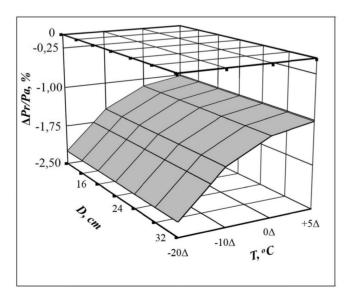


Figure 7: Change of R/S ratio when temperature assumes to be increased by 1°C due to the expected climate change at different temperatures.

Figures 5 and 6 are hypothetical. They reflect longterm adaptive responses of forest stands to regional climatic conditions and do not take into account the rapid trends of current environmental changes. which shows serious constraints on the ability of forests to adapt the new climatic conditions (Givnish, 2002; Alcamo et al., 2007; Berner et al., 2013; Schaphoff et al., 2016; Spathelf et al., 2018; Vasseur et al., 2018; DeLeo et al., 2019; Denney and Anderson, 2019). The law of limiting factors (Liebig, 1840; Shelford, 1913) works well in static conditions. With a rapid change in limiting factors (such as air temperature or precipitation), forest ecosystems in a transitional (non-stationary) state, in which some factors that were still not significant may come to the fore, and the result may be determined by other limiting factors (Odum, 1975).

2. A disadvantage of the database used in this study is the uneven spatial distribution and different representations of sampling sites for natural and plantation trees over Eurasia as shown in Figures 1 and 2 and Table 1. In the regression analysis of biomass data we used the least-squares method, it estimates of biomass in ecoregions with a minimum number of sampling sites may be biased due to the greater "information weight" of ecoregions with the largest number of sampling sites. Methodological uncertainties causing biases in biomass amounts in parts of the individual tree may also affect the accuracy of the estimates.

- 3. The response of forests to climate change also depends on whether the photosynthetic benefits from increased atmospheric CO2 compensates for increased physiological stresses from higher temperatures or not (Sperry, 2019). For example, moderate temperature rise (3°C) along with rising CO₂ concentration can increase net photosynthesis of plant population but can decrease biomass production because of increased respiration. However, an increase in temperature by 6°C can decrease both photosynthesis and biomass production, regardless of species' optimal temperature (Gustafson et al., 2017). There is a problem related to the associated effects with the simultaneous interaction of various factors (Pucko et al., 2011; Gray and Brady, 2016; Gustafson et al., 2017).
- 4. In equations (1), three mass-determining factors (A, D, and H) cover most of the explained variations: for the biomass of stem, needles, branches, and aboveground which are 94, 86, 91, and 87%, respectively. Climate variables and differences between natural forest and plantation trees account for only 6 to 13% of the variability. The structure of these "residual" variables is highly variable and heterogeneous. In addition, to the already noted uneven filling the initial data matrix, there are discrepancies between the age periods of mapping as shown in Figures 1 and 2, and calendar ages of different biomass components, between the large step of temperature and precipitation isolines on the maps and local topography features, as well as local soil differences, despite the fact that the soil zoning reflects the action of climatic factors (Dokuchaev, 1948; Rukhovich et al., 2019).

Taking into account the stated methodological and conceptual uncertainties, the results presented in this study provide a solution to the problem only in the first approximation and should be considered as preliminary ones and having not so much factual as methodological

significance. They can be modified if the biomass database will be enhanced by additional data, mainly site-specific and strand-specific characteristics as well as by more advanced methodology.

Conclusions

The database compilation of natural forest and plantation of single-trees concludes that the aboveground and stem biomass of equal-sized and equal-aged natural forest and plantation trees increases with the rise of temperature in January and annual precipitation. This pattern is partially valid for the branches' biomass, and it has a specific character for the foliage one. The biomass components of plantation trees are higher than that of natural forest, but the percentage of excess biomass varies among different components and depends on the level of January's temperatures. However, it does not depend on the level of annual precipitation. As one moves from cold to warm climate, the excess biomass of plantation tree over natural forest increases from 1.3 to 5.3% in stem biomass, it decreases from 28 to 6% for foliage biomass, as well as from 4.8 to 2.1% and 6.3 to 1.5% for branches and aboveground biomass, respectively, regardless of the precipitation level. As one moves from warm to cold climate, the absolute value of the root: shoot (R/S) ratio for small trees (DBH = 8)cm) increases from 0.17 to 0.26, and for big trees (DBH = 32 cm) from 0.13 to 0.20. In terms of percentage, it does not depend on the stem size and increases by 48%. The results presented can be accounted for as the first approximation only.

Acknowledgements

This paper was prepared within the programs of the current scientific research of the Ural Forest Engineering University and Botanical Garden of the Ural Branch of Russian Academy of Sciences.

References

Alcamo, J., Moreno, J.M., Nováky, B., Bindi, M., Corobov, R., Devoy, R.J.N. et al., 2007. Europe: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. *In:* Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (eds.), Climate Change. pp. 541-580. Cambridge University Press, Cambridge.

- Antonov, A.M., 2007. Comparison of indices of wood macrostructure in natural and artificial *Pinus sylvestris* forests. *Ecological Problems of the North*, **10:** 15-16 (Rus.).
- Antsiferov, G.I., Erusalimskiy, V.I. and Mironov, V.V., 1971. Development of rational technology of creation of coniferous species plantations in the conditions of periodically excessively moistened soils of the southern taiga. *In:* Protective Afforestation and Forest Plantations. pp. 110-118. Proceedings of VNIILM on forestry. Moscow: Lesnaya Promyshlennost' Publishing (Rus.).
- Baskerville, G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. *Canadian Journal of Forest Research*, **2:** 49-53.
- Bell, D.M., Christopher Oishi, A., Domec, J.-Ch., Gavazzi, M.J., Johnson, D.M., King, J.S., McNulty, S.G., Miao, G., Noormets, A., Palmroth, S., Radecki, A., Sun, G. and Ward, E., 2015. Conversion of natural forests to managed forest plantations decreases tree resistance to prolonged droughts. Forest Ecology and Management, 355: 58-71. DOI: 10.1016/j.foreco.2015.04.012.
- Bennett, S., Wernberg, T., Arakkal, Joy B., de Bettignies, T. and Campbell, A.H., 2015. Central and rear-edge populations can be equally vulnerable to warming. *Nature Communications*, **6, 10280:** 1-7. DOI: 10.1038/ncomms10280.
- Berezyuk, I.E., 1959. On a dense planting of forest plantations. Proceedings of the Kazakh Research Institute of Forestry, 2: 40-49 (Rus.).
- Berner, L.T., Beck, P.S.A., Bunn, A.G. and Goetz, S.J., 2013. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. *Global Change Biology*, **19(11):** 3449-3462. DOI: 10.1111/gcb.12304.
- Biryukova, Z.P. and Biryukov, V.N., 1984. Ecological and physiological aspects of stability of artificial stands of Scots pine in Northern Kazakhstan. *In:* B.N. Norin (ed.), Ecology of forest Communities of Northern Kazakhstan. pp. 8-16. Leningrad, Nauka Publishing (Rus.).
- Biryukova, Z.P. and Makarenko, A.A., 1983. Resistance to drought of young forest plantations of natural and artificial origin. *In:* Abstracts of the 7th Congress of the All-Union Botanical Society. pp. 126. Leningrad, Nauka Publishing (Rus.).
- Bolte, A., Hilbrig, L., Grundmann, B.M., Roloff, A. and
 Brunet, J., 2014. Climate change induced forest succession
 The role of disturbances. Hahn A. et al. (eds.), An international conference of IUFRO unit 4.02.00 on Forest Cover Change. Freising, Germany, 2nd–4th April 2014, 13.
- Bond-Lamberty, B., Wang, C. and Gower, S.T., 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. *Canadian Journal of Forest Research*, **32:** 1441-1450. DOI: 10.1139/X02-063.
- Bouriaud, O., Bréda, N., Dupouey, J.-L. and Granier, A., 2005. Is ring width a reliable proxy for stem-biomass

- increment? A case study in European beech. *Canadian Journal of Forest Research*, **35:** 2920-2933. DOI: 10.1139/X05-202.
- Boysen, L.R., Lucht, W., Gerten, D., Heck, V., Lento, T.M. and Schellnhuber, H.J., 2017. The limits to global-warming mitigation by terrestrial carbon removal. *Earth's Future*, **5(5):** DOI: 10.1002/2016EF000469.
- Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P. and Sayer, J., 2008. Plantation forests and biodiversity: Oxymoron or opportunity? *Biodiversity and Conservation*, **17:** 925-951. DOI: 10.1007/s10531-008-9380-x.
- Carrer, M. and Urbinati, C., 2004. Age-dependent tree-ring growth responses to climate in *Larix decidua* and *Pinus cembra*. *Ecology*, **85(3)**: 730-740.
- Chernov, N.N., 2001. On a ratio of natural and artificial reforestation in the Urals. *Forests of the Urals and their Management*, **21:** 210-219 (Rus.).
- Chernyshev, V.D., 1974. Pathways of physiological and energetic adaptations of conifers under extreme conditions. *In:* Biologicheskie problemy Severa: Tezisy VI Simp. (Biological Problems of the North: Abstr. VI Symp.). Yakutsk: Inst. Biol., *Yakutsk. Fil. Sib. Otd. Akad. Nauk SSSR*, 5: 13-17 (Rus.).
- Ciesla, W.M., 1995. Climate Change, Forests and Forest Management: An Overview. FAO Forestry Paper 126, Food and Agriculture Organization of the United Nations, Rome. 128 pp.
- Clark, J.S., Iverson, L., Woodall, C.W., Allen, C.D., Bell, D.M., Bragg, D.C., D'Amato, A.W., Davis, F.W., Hersh, M.H., Ibanez, I. and Zimmermann, N.E., 2016. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. *Global Change Biology*, **22(7):** 2329-2352. DOI: 10.1111/gcb.13160.
- Danchenko, A.M., Frickel, Ya.A. and Verzunov, A.I., 1991. The formation of artificial young stands of white birch. Tomsk, Tomsk Scientific Center. 199 pp. (Rus.).
- DeLeo, V.L., Menge, D.N.L., Hanks, E.M., Juenger, T.E. and Lasky, J.R., 2019. Effects of two centuries of global environmental variation on phenology and physiology of *Arabidopsis thaliana*. *Global Change Biology*, 1-16. DOI: 10.1111/gcb.14880.
- Denney, D.A. and Anderson, J.T., 2019. Natural history collections document biological responses to climate change: A commentary on DeLeo et al. (2019), Effects of two centuries of global environmental variation on phenology and physiology of *Arabidopsis thaliana*. *Global Change Biology*, 1-3. DOI: 10.1111/gcb.14922.
- Detlaf, T.A. and Detlaf, A.A., 1982. Dimensionless criteria as a method of quantitative characterization of animal development. *In:* Mathematical Biology of Development. Moscow, Nauka Publishing. 25-39. (Rus.).
- Dokuchaev, V.V., 1948. The Theory of Nature Zones. Moscow, Geografgiz, 63 pp. (Rus.).
- Duan, H., Huang, G., Zhou, Sh. and Tissue, D.T., 2018. Dry mass production, allocation patterns and water

- use efficiency of two conifers with different water use strategies under elevated $[CO_2]$, warming and drought conditions. *European Journal of Forest Research*, **137**: 605-618. DOI:10.1007/s10342-018-1128-x.
- Dulamsuren, C., Wommelsdorf, T., Zhao, F., Xue, Y., Zhumadilov, B.Z., Leuschner, C. and Hauck, M., 2013. Increased summer temperatures reduce the growth and regeneration of *Larix sibirica* in the southern boreal forests of Eastern Kazakhstan. *Ecosystems*, 16(8): 1536-1549. DOI: 10.1007/s10021-013-9700-1.
- Durkaya, A., Durkaya, B. and Say, Ş.U., 2016. Below- and aboveground biomass distribution of young Scots pines from plantations and natural stands. *Bosque*, **37(3)**: 509-518. DOI: 10.4067/S0717-92002016000300008.
- Dymond, C.C., Beukema, S., Nitschke, C.R., Coates, K.D. and Scheller, R.M., 2016. Carbon sequestration in managed temperate coniferous forests under climate change. *Biogeosciences*, **13:** 1933-1947. DOI:10.5194/bg-13-1933-2016.
- Emanuel, W.R., Shugart, H.H. and Stevenson, M.P., 1985. Climate change and the broad scale distribution of terrestrial ecosystem complexes. *Climate Change*, 7: 29-43.
- Fang, O., Yang Wang, Y. and Shao, X., 2016. The effect of climate on the net primary productivity (NPP) of *Pinus koraiensis* in the Changbai Mountains over the past 50 years. *Trees*, **30(1)**: 281-294. DOI: 10.1007/s00468-015-1300-6.
- FAO., 2006. Global Forest Resources Assessment 2005— Progress towards sustainable forest management. FAO Forestry Paper 147, Food and Agriculture Organization of the United Nations, Rome, Italy. 320 pp.
- Fatemi, F.R., Yanai, R.D., Hamburg, S.P., Vadeboncoeur, M.A., Arthur, M.A., Briggs, R.D. and Levine, C.R., 2011. Allometric equations for young northern hardwoods: The importance of age-specific equations for estimating aboveground biomass. *Canadian Journal of Forest Research*, **41(4)**: 881-891. DOI: 10.1139/x10-248.
- Felton, A., Nilsson, U., Sonesson, J., Felton, A.M., Roberge, J.-M., Ranius, T., Ahlström, M., Bergh, J., Bjorkman, C., Boberg, J., Drössler, L., Fahlvik, N., Gong, P., Holmström, E., Keskitalo, E.C.H., Klapwijk, M.J., Laudon, H., Lundmark, T., Niklasson, M., Nordin, A., Pettersson, M., Stenlid, J., Sténs, A. and Wallertz, K., 2016. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. *Ambio*, **45(Suppl. 2):** 124-139. DOI: 10.1007/s13280-015-0749-2.
- Folland, C.K., Palmer, T.N. and Parker, D.E., 2001. Climate change 2001: The scientific basis. *In:* Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. Houghton, J.T. et al.), Cambridge University Press, Cambridge, UK. 1032 pp.
- Forrester, D.I., Tachauer, I.H.H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano,

- G., Zlatanov, T., Chakraborty, T., Saha, S. and Sileshi, G.W., 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. *Forest Ecology and Management*, **396**: 160-175. DOI:10.1016/j. foreco.2017.04.011.
- Fu, L., Sun, W. and Wang, G., 2017. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. *Trees*, **31**: 557-573. DOI:10.1007/s00468-016-1490-6.
- Gabeev, V.N., 1990. Ecology and productivity of Scots pine forests. Novosibirsk, Nauka. 229 pp. (Rus.).
- Gao, G.-L., Ding, G.-D., Zhang, A., Cao, M.-N., Zhao, Y.-Y., Bao, Y.-F., Guo, Y.-J., Yu, M.-H. and Li, X., 2014. Comparison of stand spatial structure in different plantations and natural forests in Rocky Mountain area of Northern China. *International Journal of Design & Nature* and Ecodynamics, 9(2): 141-148.
- Gauli, A., Gailing, O., Stefenon, V.M. and Finkeldey, R., 2009. Genetic similarity of natural populations and plantations of *Pinus roxburghii* Sarg. in Nepal. *Annals of Forest Science*, 66(7): 703. DOI: 10.1051/forest/2009053.
- Genet, A., Wernsdörfer, H., Jonard, M., Pretzsch, H., Rauch, M., Ponette, Q., Nys, C., Legout, A., Ranger, J., Vallet, P. and Saint-André, L., 2011. Ontogeny partly explains the apparent heterogeneity of published biomass equations for *Fagus sylvatica* in central Europe. *Forest Ecology and Management*, **261(7)**: 1188-1202. DOI: 10.1016/j. foreco.2010.12.034.
- Givnish, T.J., 2002. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. *Silva Fennica*, **36(3)**: 703-743. DOI:10.14214/sf.535.
- Godney, L.E. and Nevzorov, I.M., 1970. The influence of early crown closing on the sustainability of pine plantations in the Buzuluk forest island. *Forest Management* [Lesnoe Khozyaistvo], 11: 35 (Rus.).
- Godnev, L.E., 1965. On the stability of plantations in lichen and mossy pine forests of Buzuluk forest island. *In:* Proceedings of VNIILM on Forestry, **2:** 137-145 (Rus.).
- Grabenweger, G., Avtzis, N., Girardoz, S., Hrasovec, B., Tomov, R. and Kenis, M., 2005. Parasitism of *Cameraria ohridella* (Lepidoptera, Gracillariidae) in natural and artificial horse-chestnut stands in the Balkans. *Agricultural and Forest Entomology*, **7(4)**: 291-296. DOI: 10.1111/j.1461-9555.2005.00269.x.
- Gray, S.B. and Brady, S.M., 2016. Plant developmental responses to climate change. *Developmental Biology*, **419(1):** 64-77. DOI: 10.1016/j.ydbio.2016.07.023.
- Gustafson, E.J., Miranda, B.R., De Bruijn, A.M.G., Sturtevant, B.R. and Kubiske, M.E., 2017. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition. *Environmental Modelling & Software*, 97: 171-183. DOI: 10.1016/j. envsoft.2017.08.001.

- Jordan, C.F. and Farnworth, E.G., 1982. Natural vs. plantation forests: A case study of land reclamation strategies for the humid tropics. *Environmental Management*, **6(6)**: 485-492.
- Karpov, V.G., 1950. On the factors that determine the resistance of Scots pine to droughts. Doklady Akademii Nauk SSSR. *Reports of the USSR Academy of Sciences*, 72(4): 793-797 (Rus.).
- Kazaryan, V.O., 1966. Aging of higher plants as ontogenetic attenuation of root-shoot ratios. Reports of Yerevan Symposium on ontogenesis of higher plants. Yerevan, Publishing House of the Academy of Sciences of the Armenian SSR, pp. 155-194 (Rus.).
- Khan, D., Muneer, M.A., Nisa, Z.-U., Shah, S., Saeed, S., Uddin, S., Munir, M.Z., Lushuang, G. and Huang, H., 2019b. Effect of climatic factors on stem biomass and carbon stock of *Larix gmelinii* and *Betula platyphylla* in Daxing'anling Mountain of Inner Mongolia, China. *Advances in Meteorology*, Article ID 5692574: 1-10. DOI:10.1155/2019/5692574
- Khonin, N.N., 1974. Stability of Scots pine plantations in the Saratov region depending on the stand density. *In:* Abstracts of the All-Union Scientific Conference on Reforestation. Moscow, Lesnaya Promyshlennost' Publishing. pp. 15-18 (Rus.).
- Kirilenko, A.P. and Sedjo R.A., 2007. Climate change impacts on forestry. *Proceedings of the National Academy of Sciences*, **104(50)**: 19697-19702. DOI:10.1073/pnas.0701424104.
- Kobak, K.I. and Kondrasheva, N.Yu., 1985. Anthropogenic impacts on forest ecosystems and the role of these impacts in the global carbon cycle. *Botanical Journal*, **70(3):** 305-313 (Rus.).
- Kobak, K.I. and Kondrasheva, N.Yu., 1992. Changes in localization of natural zones under global warming. *Russian Journal of Ecology*, **3:** 9-18.
- Kosanic, A., Anderson, K., Harrison, S., Turkington, T. and Bennie, J., 2018. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall Peninsula (South West UK). *PLoS ONE*, **13(2)**: e0191021. DOI: 10.1371/journal.pone.0191021.
- Laing, J. and Binyamin, J., 2013. Climate change effect on winter temperature and precipitation of Yellow knife, Northwest Territories, Canada from 1943 to 2011. *American Journal of Climate Change*, 2(4): 275-283. DOI: 10.4236/ajcc.2013.24027.
- Lewis, S.L., Wheeler, C.E., Mitchard, E.T.A. and Koch, A. 2019. Regenerate natural forests to store carbon. *Nature*, **568:** 25-28.
- Li, P., Zhao, Zh., Li, Zh. and Xue, S., 2011. Root distributions and drought resistance of plantation tree species on the Weibei Loess Plateau in China. *African Journal of Agricultural Research*, **6(21):** 4989-4997. DOI: 10.5897/AJAR11.832.
- Justus von, L., 1840. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig,

- Verlag Vieweg. *In:* Deutsches Textarchiv http://www.deutschestextarchiv.de/liebig_agricultur_1840>, abgerufen am 26.11.2019.
- Liu, L.B., Yang, H.M., Xu, Y., Guo, Y.M. and Ni, J., 2016. Forest biomass and net primary productivity in Southwestern China: A meta-analysis focusing on environmental driving factors. *Forests*, **7(8)**: 173. DOI: 10.3390/f7080173.
- Luganskiy, N.A. and Shipitsina, O.V., 2008. Comparative productivity of artificial and natural forests. Forest Bulletin [Lesnoy Vestnik], **3:** 50-53 (Rus.).
- Lyr, H., Polster, H. and Fiedler, H.-J., 1967. Gehölzphysiologie. Jena, VEB Gustav Fischer Verlag. 444 pp.
- Mackey, B., 2014. Counting trees, carbon and climate change. Significance, **11(1):** 19-23. DOI: 10.1111/j.1740-9713.2014.00720.x.
- Makarenko, A.A. and Biryukova, Z.P., 1982. Productivity and stability of artificial forest stands in Northern Kazakhstan. *In:* Productivity and Stability of Forest Ecosystems. (Abstracts of papers for the International Symposium, 16-18 August, 1982, Tbilisi, USSR). Krasnoyarsk, Academy of Sciences of USSR. 44 pp. (Rus.).
- Mäkipää, R., Villén-Peréz, S., Salemaa, M. and Heikkinen, J., 2015. Potential changes in the species' range of geographical distribution. *In:* 17th IBFRA Conference Towards a New Era of Forest Science in Boreal Region. May 24-29, Rovaniemi, Finland. 134 pp.
- Maksimov, N.A., 1944. Development of the doctrine of the water regime and plant resistance to drought from Timiryazev to the present day. Moscow, Academy of Sciences of USSR. 47 pp. (Rus.).
- Maurer, V.M. and Pinchuk, A.P., 2014. Ways to improve and increase the stability developed forest plantations. *Scientific Bulletin of the National University of Bioresources and Environmental Sciences of Ukraine. Ser.: Forestry and Ornamental Gardening*, **198(1):** 102-108 (Available at: http://nbuv.gov.ua/UJRN/nvnau lis 2014 198(1) 17)
- Mazhula, O., 2018. Variability of morphological markers of cone and seeds in natural populations and artificial plantations of the Scots pine (*Pinus sylvestris* L.). *Journal of Plant Sciences and Crop Protection*, **1(3):** 303.
- Melekhov, V.I., Babich, N.A. and Korchagov, S.A., 2003. Wood quality in Scots pine plantations. Arkhangelsk, Arkhangelsk State Technical University. 110 pp. (Rus.).
- Merzlenko, M.D., 2017. Actual aspects of artificial reforestation. Lesnoy Zhurnal (Proceedings of higher educational institutions), **3:** 22-30. (In Russian with English Abstract). DOI: 10.17238/issn0536-1036.2017.3.22.
- Mironov, V.V., 1977. Ecology of coniferous species at artificial renewal of forests. Moscow, Lesnaya Promyshlennost' Publ. 232 pp. (Rus.).
- Morley, J.W., Batt, R.D. and Pinsky, M.L., 2017. Marine assemblages respond rapidly to winter climate variability. *Global Change Biology*, **23:** 2590-2601. DOI: 10.1111/gcb.13578.

- Nabuurs, G.J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W.A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N.H., Sanz Sanchez, M.J. and Zhang, X., 2007. Forestry. *In:* Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp. 541-584.
- Navarro-Cerrillo, R.M., Rodriguez-Vallejo, C., Silveiro, E., Hortal, A., Palacios-Rodríguez, G., Duque-Lazo, J. and Camarero, J.J., 2018. Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated *Pinus pinaster* stands. *Forests*, **9**: 358. DOI:10.3390/f9060358.
- Nevzorov, V.M., 1970. To the question on the crisis of Scots pine plantations in the dry site conditions in the Buzuluk forest island. *In:* Proceedings of VNIILM on forestry, **52:** 21-26 (Rus.).
- Ni, J., Zhang, X.-S. and Scurlock, J.M.O., 2001. Synthesis and analysis of biomass and net primary productivity in Chinese forests. *Annals of Forest Science*, **58(4)**: 351-384. DOI: 10.1051/forest:2001131.
- Nikitin, K.E., 1965. Forest and mathematics. Lesnoe Khozyaistvo. *Forest Management*, **5:** 25-29 (Rus.).
- Niskanen, A., 2000. Forest plantations in the South: Environmental-Economic Evaluation. *In:* Palo, M., Vanhanen, H. (eds.), World Forests from Deforestation to Transition?. World Forests, 2. Springer, Dordrecht. DOI: 10.1051/forest:200113110.1007/978-94-010-0942-3 5.
- Ochał, W., Wertz, B. and Socha, J., 2013. Evaluation of aboveground biomass of black alder. Forest Biomass Conference 2013, 7-9 October 2013, Mierzęcin, Poland. Book of Abstracts. Ed. By Andrzej M. Jagodziński and Andrzej Wegiel. Poznań: 40.
- Odum, E.P., 1975. Fundamentals of Ecology. Moscow: "Mir" Publishing. 740 pp. (Translated from: E.P. Odum. Fundamentals of Ecology. The third Edition. Philadelphia-London-Toronto, W.B. Saunders Company, 1971.)
- Onuchin, A., Shvidenko, A., Pavlov, I. and Schepaschenko, D., 2009. Russian forests: Impact on Earth system. *In:* XIII World Forestry Congress, 18-25 October 2009, Buenos Aires, Argentina: 1-8. (Available at: http://www.iiasa.ac.at/Research/FOR/conferences/2009/WFC/WFC09_IIASA-SE abstract Onuchin 16 10 2009 clean final+ 1. Pdf).
- Pawson, S.M., Brin, A., Brockerhoff, E.G., Lamb, D., Payn, T.W., Paquette, A. and Parrotta, J.A., 2013. Plantation forests, climate change and biodiversity. *Biodiversity and Conservation*, 22: 1203-1227. DOI: 10.1007/s10531-013-0458-8.
- Polyakov, A.N., Ipatov, L.F. and Uspensky, V.V., 1986. Productivity of forest plantations. Moscow, Agropromizdat. 240 pp. (Rus.).

- Pucko, C., Beckage, B., Perkins, T. and Keeton, W.S., 2011. Species shifts in response to climate change: Individual or shared responses? *The Journal of the Torrey Botanical Society*, **138(2)**: 156-176. https://www.jstor.org/stable/41262029.
- Qiu, Q., Yun, Q., Zuo, Sh., Yan, J., Hua, L., Ren, Y., Tang, J., Li, Y. and Chen, Q., 2018. Variations in the biomass of *Eucalyptus* plantations at a regional scale in Southern China. *Journal of Forestry Research*, **29(5):** 1263-1276. DOI: 10.1007/s11676-017-0534-0.
- Roberts, S.M., 2019. The role of cyclical climate oscillations in species distribution shifts under climate change. Predicting Future Oceans, Sustainability of Ocean and Human Systems Amidst Global Environmental Change, Chapter 13: 129-135. DOI: 10.1016/B978-0-12-817945-1.00011-3.
- Rodriguez-Vallejo, C. and Navarro-Cerrillo, R.M., 2019. Contrasting response to drought and climate of planted and natural *Pinus pinaster* Aiton forests in Southern Spain. *Forests*, **10(7):** 603. DOI: 10.3390/f10070603.
- Romanov, E.M., Nureeva, T.V. and Belousov, A.A., 2014. The role of artificial stands of pine (*Pinus sylvestris* L.) in improving the quality of the forest fund of the Kirov oblast'. Forest Bulletin [Lesnoy Vestnik], **4:** 29-37 (In Russian with English Abstract).
- Rubtsov, V.I., Novoseltseva, A.I., Popov, V.K. and Rubtsov, V.V., 1976. Biological productivity of Scots pine in forest-steppe zone. Moscow, Nauka. 223 pp. (Rus.).
- Rukhovich, D.I., Pankova, E.I., Kalinina, N.V. and Chernousenko, G.I., 2019. Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index. *Eurasian Soil Science*, **52(3):** 271-282. DOI: 10.1134/S1064229319010125.
- Schaphoff, S., Reyer, Ch.P.O., Schepaschenko, D., Gerten, D. and Shvidenko, A., 2016. Tamm review: Observed and projected climate change impacts on Russia's forests and its carbon balance. *Forest Ecology and Management*, 361: 432-444. DOI: 10.1016/j.foreco.2015.11.043.
- Sedjo, R.A. and Solomon, A.M., 1989. Climate and forests. *In:* Rosenberg, N.J., Easterling, W.E., Crosson, P.R.,
 Darmstadter, J. (eds.). Greenhouse Warming: Abatement and Adaptation, RFF Proceedings, Resources for the Future, Washington, DC: 105-120.
- Shelford, V.E., 1913. Animal communities in temperate America as illustrated in the Chicago region: A study in animal ecology. Issue 5, Part 1. Pub. for the Geographic Society of Chicago by the University of Chicago Press. 362 pp.
- Shvidenko, A.Z., Gustafson, E., McGuire, A.D., Kharuk, V.I., Schepaschenko, D.G., Shugart, H.H., Tchebakova, N.M., Vygodskaya, N.N., Onuchin, A.A., Hayes, D.J., McCallum, I., Maksyutov, S., Mukhortova, L.V., Soja, A.J., Belelli-Marchesini, L., Kurbatova, J.A., Oltchev, A.V., Parfenova, E.I. and Shuman, J.K., 2013. Terrestrial ecosystems and their change. *In:* Regional Environmental

- Changes in Siberia and Their Global Consequences. P.Ya. Groisman and G. Gutman (eds.). Springer Environmental Science and Engineering. pp. 171-249. DOI: 10.1007/978-94-007-4569-8 6.
- Sidorov, V.A., Girlov, V.A. and Volynchuk, I.M., 1978. On the causes of weakening and death of forest plantations in Northern Kazakhstan. *Proceedings of the Kazakh Research Institute of Forestry*, **10:** 125-138 (Rus.).
- Sobuj, N.A. and Rahman, M., 2011. Comparison of plant diversity of natural forest and plantations of Rema-Kalenga Wildlife Sanctuary of Bangladesh. *Journal of Forest Science*, **27(3)**: 127-134.
- Spathelf, P., Stanturf, J., Kleine, M., Jandl, R., Chiatante, D. and Bolte, A., 2018. Adaptive measures: Integrating adaptive forest management and forest landscape restoration. *Annals of Forest Science*, **75(2)**: 55. DOI: 10.1007/s13595-018-0736-4.
- Sperry, J.S., Venturasa, M.D., Todda, H.N., Trugmana, A.T., Anderegga, W.R.L., Wanga, Y. and Tai, X., 2019. The impact of rising CO₂ and acclimation on the response of US forests to global warming. *Proceedings of the National Academy of Sciences of the United States of America*, 116(51): 25734-25744. DOI: 10.1073/pnas.1913072116.
- Stage, A.R., Renner, D.L. and Chapman, R.C., 1988. Selected yield tables for plantations and natural stands in Inland Northwest Forests. USDA Forest Service, Intermountain Research Station. Research Paper INT-394. 60 pp.
- Stankova, T.V. and Diéguez-Aranda, U., 2020. Dynamic structural stand density management diagrams for evenaged natural stands and plantations. *Forest Ecology and Management*, 458. DOI: 10.1016/j.foreco.2019.117733.
- Stegen, J.C., Swenson, N.G., Enquist, B.J., White, E.P., Phillips, O.L., Jorgensen, P.M., Weiser, M.D., Mendoza, A.M. and Vargas, P.N., 2011. Variation in above-ground forest biomass across broad climatic gradients. *Global Ecology and Biogeography*, **20(5)**: 744-754. DOI: 10.1111/j.1466-8238.2010.00645.x.
- Taki, H., Yamaura, Y., Okabe, K. and Maeto, K., 2011. Plantation vs. natural forest: Matrix quality determines pollinator abundance in crop fields. *Scientific Reports*, 1: 132. DOI: 10.1038/srep00132.
- Tekpetey, S., Opuni Frimpong, E., Appiah-Kubi, E. and Essien, C. 2014. The technological properties of plantation grown mahogany in Ghana: Are they inferior to naturally grown ones? *The International Forestry Review*, **16(5)**: 370. (Abstracts from XXIV IUFRO World Congress. Sustaining Forests, Sustaining People: The Role of Research.)
- Tolmachev, A.I., 1962. Osnovy ucheniya ob arealakh: Vvedenie v khorologiyu rasteniy (Fundamentals of Plant Habitat Theory: Introduction to Plant Community Chorology), Leningrad, State University Publishing, 100 pp. (Rus.).
- Tsel'niker, Yu.L., 1994. Structure of spruce crown. Lesovedenie. Russian Journal of Forest Science, 4: 35-44.

- Usoltsev, V.A., 1972. Birch and aspen crown biomass in forests of Northern Kazakhstan. Vestnik Selskokhozyaystvennoy Nauki Kazakhstana [Bulletin of Agricultural Science of Kazakhstan], 4: 77-80 (Rus.).
- Usoltsev, V.A., 1985. Modeling of the structure and dynamics of forest stand biomass. Krasnoyarsk, Krasnoyarsk University Publishing. 191 pp. (Rus.). (Available at: http://elar.usfeu.ru/handle/123456789/3353).
- Usoltsev, V.A., 1988. Growth and structure of forest stand biomass. Novosibirsk: Nauka Publishing. 253 pp. (Rus.). (Available at: http://elar.usfeu.ru/handle/123456789/3352).
- Usoltsev, V.A., 2016. Single-tree biomass of forest-forming species in Eurasia: Database, climate-related geography, weight tables. Yekaterinburg: Ural State Forest Engineering University. 336 pp. (Available at: http://elar.usfeu.ru/handle/123456789/5696).
- Usoltsev, V.A. and Vanclay, J.K., 1993. Biomass growth and structure of pine plantations and natural forests on dry steppe in Kazakhstan. *In:* Growth and Yield Estimation from Successive Forest Inventories. Proceedings of the IUFRO Conference, Copenhagen. Forskningsserien, 3: 267-281
- Usoltsev, V.A. and Vanclay, J.K., 1995. Stand biomass dynamics of pine plantations and natural forests on dry steppe in Kazakhstan. *Scandinavian Journal of Forest Research*, **10:** 305-312. DOI:10.1080/02827589509382897.
- Usoltsev, V.A., Krepkiy, I.S. and Vanclay, J.K., 1994. Growth and structure of pine biomass of natural and artificial origin. *Forests of the Urals and Their Management*, **17:** 39-58. (Rus.). (Available at: http://elar.usfeu.ru/bitstream/123456789/4476/1/lesa urala 17 05.pdf).
- Usoltsev, V.A., Vorobeichik, E.L. and Bergman, I.E., 2012. Biological productivity of Ural forests under conditions of air pollutions: Studying a system of regularities. Ural State Forest Engineering University, Yekaterinburg. 366 pp. (Rus.). (Available at: http://elar.usfeu.ru/handle/123456789/458).
- Usoltsev, V.A., Voronov, M.P., Azarenok, M.V. and Kokh, E.V., 2017. Transcontinental additive allometric models and weight tables for estimating biomass of two-needled pine trees in natural forests and plantations. Agrarian Bulletin of the Urals, **165(11):** 56-64 (In Russian with English Abstract). (Available at: http://avu.usaca.ru/media/BAhbB1sHOgZmSSIjMjAxOC8wMS8yMi8xNV8yN180 MF82NjdfMTAucGRmBjoGRVQ).
- Usoltsev, V.A., Zukow, W., Osmirko, A.A., Tsepordey, I.S. and Chasovskikh, V.P., 2019. Additive biomass models for *Larix* spp. single-trees sensitive to temperature and precipitation in Eurasia. *Ecological Questions*, **30(2)**: 57-67. DOI:10.12775/EQ.2019.012.
- Vanninen, P., Ylitalo, H., Sievänen, R. and Mäkelä, A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (*Pinus sylvestris* L.). *Trees*, 10: 231-238.
- Vasseur, F., Exposito-Alonso, M., Ayala-Garay, O.J., Wang, G., Enquist, B.J., Vile, D., Violle, C. and Weigel, D.,

- 2018. Adaptive diversification of growth allometry in the plant *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences of the United States of America*, **115(13):** 3416-3421. DOI:10.1073/pnas.1709141115.
- Verzunov, A.I., 1987. The impact of the drought 1981-1982 years on the state of the forest stands in the Kazakh Low Hills, Northern Kazakhstan. *In:* Forest ecosystems in the conditions of continental climate. Collection of proceedings. Krasnoyarsk, Krasnoyarsk University Press. pp. 26-35 (Rus.).
- World Weather Maps., 2007. URL. (https://www.mapsofworld.com/referrals/weather).
- Yang, Y.-S., Chen, G.-S., Lin, P., Xie, J.-S. and Guo, J.-F., 2004. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. *Annals of Forest Science*, 61: 617-627. DOI: 10.1051/forest:2004062.
- Yu, G., Liu, Y., Wang, X. and Ma, K., 2008. Age-dependent tree-ring growth responses to climate in Qilian juniper (*Sabina przewalskii* Kom.). *Trees*, 22: 197-204. DOI: 10.1007/s00468-007-0170-y.
- Yuodvalkis, A.I. and Jonikas, Yu.V., 1985. Beginning the phase of tree density stress in Scots pine plantations of different initial density. *In:* Patterns of growth and productivity of forest stands: Thesis of reports. Kaunas: Lithuanian Agricultural Academy. pp. 137-138. (Rus.).

- Yusupov, I.A., Zalesov, S.V. and Luganskiy, N.A., 1997. Aboveground phytomass of artificial young pine forests in the conditions of air emissions in the Middle Urals. *In:* Biological reclamation of disturbed lands. Institute of Forest, Ural branch of RAS, Yekaterinburg. pp. 266-278 (Rus.).
- Zeng, W.S., Chen, X.Y., Pu, Y. and Yang, X.Y., 2018. Comparison of different methods for estimating forest biomass and carbon storage based on National Forest Inventory data. *Forest Research*, **31(1):** 66-71 (кит. рез. англ.). DOI: 10.13275/j.cnki.lykxyj.2018.01.008.
- Zeng, W.S., Duo, H.R., Lei, X.D., Chen, X.Y., Wang, X.J., Pu, Y. and Zou, W.T., 2017. Individual tree biomass equations and growth models sensitive to climate variables for *Larix* spp. in China. *European Journal of Forest Research*, **136**: 233-249. DOI:10.1007/s10342-017-1024-9.
- Zolotukhin, F.M., 1966. Comparative analysis of young Scots pine development of natural and artificial origin. *Forest Management* [Lesnoe Khozyaistvo], **2:** 30-33 (Rus.).
- Zubairov, B., Heußner, K.-U. and Schröder, H., 2018. Searching for the best correlation between climate and tree rings in the Trans-Ili Alatau, Kazakhstan. *Dendrobiology*, 79: 119-130. DOI:10.12657/denbio.079.011.