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Abstract: Groundwater arsenic (As) contamination is a health threat for millions of people in the Gangetic
plains of India. It is, therefore, critical to understand the mechanism of As enrichment to reduce the As exposure.
Geochemical analysis of 30 groundwater samples collected across the banks of River Sharda was performed for
the identification of major geochemical processes controlling groundwater geochemistry. Shallow wells (3-10 m)
are found to be contaminated with As and is confined to newer alluvium of Holocene age. The average temporal
decline of the groundwater level was observed across 10 monitoring stations is 0.067 m/yr. Decreasing rainfall,
lesser recharge and huge groundwater extraction for irrigation might have impacted the groundwater to flow faster,
while the increase in temperature and weathering regime favoured arsenic mobilisation. The long-term trends of
rainfall show a decline of 1.97 mm/yr and the temperature increase is observed to be 0.0049°C/yr. These changes
in rainfall and temperature also might have impacted the As mobilisation in groundwater. NO; was found to
be low in samples with low As concentrations, indicating the prevalence of reducing conditions. Whereas high
concentrations of Fe were observed for high As samples, indicating their common source of origin. Also, the
alkaline nature of aquifer and high concentrations of HCO, might have contributed to As enrichment. Results
from scatter plots and correlation matrix also support this sequential reduction leading to the reductive dissolution
of iron oxyhydroxides and thus enriching the concentration of As in the groundwater.
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Introduction et al., 2018). Approximately 137 million people are
exposed to unsafe levels of As in drinking water in
South and Southeast Asia, which includes Bangladesh,
Nepal, India, Pakistan, Cambodia, Laos, Myanmar,

Thailand and Vietnam (Nickson et al., 1998; McArthur

Arsenic (As) is a toxic element. It is also carcinogenic
and is widely accepted as a threat to public health
(IARC, 2004; WHO, 2011; WHO/UNICEF, 2015).

More than 296 million people worldwide are exposed
to high As concentrations in groundwater (Chakraborti
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et al., 2001; Smedley, 2003; Stiiben et al., 2003; Norra
et al., 2005; Farooq et al., 2010; 2011; Chakraborti et
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al., 2016; Postma et al., 2016; Bhowmick et al., 2018).
High As levels in groundwater have been reported in
many parts of India (Bhowmick et al., 2018; Mazumder
et al. 1988; Mukherjee et al., 2011). Drinking water with
As>10 pg/L leads to serious health impacts causing
skin lesions, keratosis and skin cancer (Mazumder et
al., 2008; Shannon and Strayer, 1989; Rahman et al.
2009; Chen et al., 2017). Further, chronic As exposure
significantly increases mortality due to cardiovascular
diseases, skin, liver, bladder and lung cancer (Argos et
al., 2010; Chen et al., 2011). Arsenicosis has been linked
to mortality, impaired intellect and motor dysfunction in
children (Rahman et al., 2009; Wasserman et al., 2014).

In the late 90’s, clean groundwater (free of microbial
contamination)led to an insurmountable increase in the
number of handpumps in parts of India and Bangladesh.
Since then, it has led to over-extraction of groundwater
for irrigation purposes. Over-extraction of groundwater
has significantly impacted the hydrologic regime of
groundwater and, therefore, inhibiting natural and
geochemical processes in the subsurface resulting in As
mobilisation in groundwater. Over the past three decades,
numerous studies have reported As contamination for
groundwater in the states of West Bengal (Mazumder
et al., 1988; Stiiben et al., 2003; McArthur et al., 2004;
Norra et al., 2005), Bihar (Chakraborti et al., 2016a;
2016b; Rahman et al., 2014; Saha, 2009), Assam
(Nickson et al., 2007; Thambidurai et al., 2013; Jain et
al., 2018), Manipur (Chakraborti et al., 2008), Arunachal
Pradesh (Shah, 2015a), Tripura (Singh et al., 2008),
Punjab (van Geen et al., 2019; Kumar et al., 2020),
Uttar Pradesh (Saha, 2009; Singh et al., 2018; Bindal
and Singh, 2019), Chhattisgarh (Shukla et al., 2010) and
Jharkhand (Bhattacharjee et al., 2005). The incidence of
high As level in groundwater is generally related to the
geochemical environments of the aquifer (Mukherjee et
al., 2011). The investigations suggest that the source of
As lies in alluvial and deltaic sediments belonging to
the quaternary Holocene sediments, which originated
from the Himalayas and were drained by the river and
deposited in their respective floodplains (Shah, 2008;
Smedley and Kinniburgh, 2000).

Numerous studies have been conducted in middle
Gangetic plains to understand the source and distribution
of As and the processes controlling its mobility in
groundwater (Chakraborti et al., 2016; Kumar et al.,
2010; Ramanathan et al., 2015; Shah, 2010, 2015).
McArthur et al. (2004) and Naseem and McArthur
(2018) have proposed several mechanisms for As release
in groundwater. One of the proposed mechanisms is

that As is released under oxidising conditions, with
the dissolution of sulphide-rich minerals such as
arsenopyrite (Smedley and Kinniburgh, 2000). It may
also be released by desorption of As (V) from As-
bearing iron (Fe) oxides, hydroxides and oxyhydroxides
at pH>8 (Stiiben et al., 2003; Farooqi et al., 2007).
However, the widely accepted mechanism is microbially
mediated reductive dissolution of As-bearing Fe (III)
oxides (Nickson et al., 2000). The reductive dissolution
of Fe oxyhydroxides has been widely observed in the
Gangetic plains and Bengal basin and is primarily
responsible for As mobilisation under different
hydrogeological settings (Biswas et al., 2014; McArthur
et al., 2008; Nickson et al., 2000).

Uttar Pradesh and Bihar located in the middle
Gangetic plains are affected by high As in groundwater
(Saha, 2009). The major districts of Uttar Pradesh which
are affected by As include Ballia (Chandrasekharam et
al., 2007; Chauhan et al., 2009), Gorakhpur (Singh et
al., 2018), Bahraich (Mehrotra et al., 2016), Ghazipur
(Saxena et al., 2014), Gonda (CGWB, 2014), Kanpur
(Chauhan et al., 2012) and Varanasi (Mukherjee et
al., 2018). The As contamination has been reported
from Buxar (Shah, 2014; Kumar et al., 2015), Bhojpur
(Saha, 2009), Vaishali (Saha, 2009), Patna (Saha,
2009) districts of Bihar. Altogether in Uttar Pradesh,
22 million people might be effected to due high As in
groundwater (Bindal and Singh, 2019). These districts
are situated alongside rivers Ganga, Rapti and Ghaghra,
which derive thick quaternary unconsolidated sediments
from the Himalayas.

With the above background and data, studies have
been conducted to establish the As contamination in the
Sharda river basin, and also to identify the factors and
hydrogeochemical processes controlling As-enrichment
in the groundwater.

Materials and Methods

Study Area

Sharda river basin is situated in the Lakhimpur Kheri
district of Uttar Pradesh. The district has a population of
4.02 million, and its population density of 524 people/
km? is a part of the middle Gangetic plain (Census,
2011). Sharda river separates Nepal’s border with India
lying in the Terai region along the Himalayan foothills
between 27.60°N and 28.60°N in latitude and 80.30°E
and 81.30°E in longitudes. River Sharda flows from
north to southeast and joins the Ghaghra River in the
district Bahraich.
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Geology and Geomorphology

The general slope of the area is from north-west to
southeast. The area is marked by numerous streams
and channels flowing in the southeast direction. The
surface is interrupted by low riverbeds and high banks
which spreads the stream on either side of the banks.
Both the rivers, Sharda and Ghaghra, quite often change
their course causing meandering which results in the
formation of ox-bow lakes. The dominant soil type is
black clay, which can absorb water and remain moist
for longer durations. The texture of the soils varies from
clayey loam to loam. The climate is sub-tropical, and
the area receives moderate to heavy rainfall during the
monsoon season. During monsoon, the Terai area is
prone to flooding and consequent waterlogging (Shah,
2015b).

The region comprises of the quaternary alluvial
deposits of the Ganga Plains and is divided into (a)
older alluvium (Bhangar) of mid-Pleistocene, and
newer alluvium (Khadar) belonging to the Holocene
Period (Pant and Sharma, 1993). The older alluvium of
Varanasi comprises of a polycyclic sequence of sand,
silt and clay occasionally with calcrete. The newer
alluvium, disconformably overlying the older alluvium
Varanasi, belongs to the Holocene age. It represents the
second phase of deposition in the Gangetic Plains and is
sub-divided into an alluvial fan, channel alluvium and
terrace alluvium, confined within the palaeo-banks of
the rivers. Alluvial fans are the recent accumulations
of material at the base of foothills, due to an abrupt
drop in the channel gradient (Pant and Sharma, 1993).
The terrace alluvium occurs within wide floodplains
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of the river characterised by an extensive development
of relict features of abandoned channels, meander
cut-offs, linear water bodies, which are related to the
former active channels. In the active flood channels,
the channel alluvium is seen in the form of point bars,
channels bars and lateral sand bars. This is restricted to
the active floodplain of the river Sharda.

In the study area, dug wells of approximately 3-15 m
depth and shallow borewells and handpumps of 6-15 m
depth exploit groundwater of unconfined aquifers which
are made up of fine to coarse sand. The region comprises
semi-confined and unconfined layers of aquifers, which
is the source of drinking and irrigation water in the
region (CGWB, 2014). The second layer of aquifers
is confined between 18 m and 40 m, approximately.
For the past two decades, there has been a substantial
increase in the number of shallow handpumps and
borewells leading to overexploitation of groundwater
which might have impacted the hydrological regime in
the region (Pahuja et al., 2010; NRDWP, 2012).

Sampling and Analytical Methods

A total of 78 handpumps were tested randomly for
As using the ITS Econo-Quick test kit (George et
al. 2012a) (Figure 1) and 30 groundwater samples
were randomly collected from the villages lying on
the floodplains of Sharda river. The villages were
chosen based on their proximity to the river and
geomorphic features. These ITS As Econo-Quick kit
(part no. 481298) relies on the Gutzeit method which
converts the As contained in the 50 ml sample into
arsine gas, which gets trapped on a strip impregnated
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Figure 1: Topography and sampling locations within the study area.
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with mercuric bromide. Additionally, tartaric acid, an
oxidant to remove any interfering hydrogen sulphide,
and a fine Zn powder as the reductant are added with
the reaction time of 10 mins. The groundwater in the
region was odourless (indicating absence of sulphide)
and therefore the addition of tartaric acid was avoided in
the testing of groundwater samples in the study region.
The comparisons with laboratory measurements (George
et al., 2012a; van Geen et al., 2014a) have shown that
the kit correctly categorised ~90% of wells relative to
the WHO guideline of 10 pg/L for As.

Handpumps were purged for 10 mins before
sample collection, to avoid the impact of iron pipes.
Samples tested were collected in two separate 200 ml
polypropylene bottles for further laboratory analysis.
For the determination of the cations, the sampling
bottles were acidified using 1% HNO, (~pH 2). The
samples for anion analysis were collected in separate
200 ml bottles and were left unacidified. The ancillary
information such as type, depth and age of handpump
were collected using a geo-tagged survey questionnaire.
This geo-tagged survey was carried on an android-
based platform that utilises Open Data Kit (ODK)
and the data is collected directly on mobile phones.
Electrical conductivity (EC) and pH were recorded
onsite with the help of a portable Oakton probe. On
each day of sampling, the Oakton probe for EC was
calibrated with a standard solution and the measured
values were within 8% and 16% of the expected values
of 1990 puS/cm and 16.0 puS/cm, respectively. The
Oakton probe calibration was done with pH standards
of 7.0 and 10.0 and the readings were all within 0.3
of a pH unit. In the laboratory, acidified groundwater
was analysed by atomic absorption spectrophotometer
(Thermo-Fischer) for the measurement of As, Fe, Ca®*,
Mg?*, Na* and K* (APHA, 2008). The instrument’s
detection limit was <0.1 pg/L, and the analysis was
carried out for duplicates with an error range of <2%.
Non-acidified samples were analysed for anions such as
bicarbonates (HCO;"), nitrate (NO;"), sulphate (SO,%),
chloride (CI") and dissolved phosphate (PO,*") using
ion chromatograph (Dionex) with a detection limit
of <0.05 pg/L. The samples for anion analysis were
treated with 1 N HNO, which prevents interference
from hydroxide and carbonates (APHA, 2008). These
anions/cations were selected for geochemical modelling
as they are significant for understanding the redox-
sensitive conditions that is essential for As mobilisation
in aquifers of the region. All the maps were prepared
using ArcGIS 10.1.

Results

Hydrochemistry of Aquifer

The groundwater samples collected were evaluated for
all the necessary drinking water quality parameters.
The observed values for all the parameters were
compared with the values given by the Bureau of
Indian Standards (BIS, 2012) (Tables 1). The pH of
the groundwater samples varied between 6 and 8.3
with an average of 7.2. Results indicate that some
of the groundwater samples were slightly alkaline.
However, no such correlation exists between the pH
and As concentration in groundwater samples. The
value of EC ranged from 325 to 1124 pS/cm with a
mean of 659.67 uS/cm. A higher value of EC suggests
the prevalence of cations and anions, indicating
high ionic strength and influence of surface recharge
on groundwater. Spatial variation in water quality
parameters suggests that the hydro-geochemistry of the
area is highly heterogeneous. HCO, was found as the
most abundant anion in groundwater and ranged from
122 to 896 mg/L. The source for the high concentrations
of HCOj4™ can be because of the presence of calcite
in the aquifers. Moreover, the decomposition of peat
deposits also leads to an increase in HCO;™. The flushing
of CO,-rich water from the unsaturated zone, where
CO, is formed as a byproduct from organic matter
decomposition, this might also lead to the formation
of HCO;4™ (Buschmann et al., 2007). The concentration
of NO; ranged up to a maximum of 799 mg/L with a
mean of 83.69 mg/L. This high concentration can result
from anthropogenic activities such as the addition of
fertilisers in the irrigation fields (Kumar et al., 2015).
Additionally, due to lack of sanitation infrastructures,
a lot of human sewerage seeps and contaminates the
groundwater in the region. SO,* concentrations varied
between bdl and 116 mg/L. The presence of SO,*
might be due to decomposition of organic matter and
excess run-off from surface. Another possible source
of SO,* could be pyrite mineral weathering along
with anthropogenic inputs due to excessive usage of
fertilisers. The concentration of PO43' varies within
bdl-0.5 mg/L, which might be due to the application of
PO,* rich fertilisers in the agricultural fields to enhance
the productivity of wheat and rice crops (Mandal et al.,
2019). CI" concentration ranges from 1.14 to 122.78
mg/L with a mean value of 22.61 mg/L. This high
concentration of Cl" in the groundwater samples may
be associated with the percolation of sewerage which
gets mixed with groundwater (Samantara et al., 2015).
The details of the geochemistry data for 30 samples are
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Table 1: Groundwater quality parameters for Lakhimpur Kheri along with values for
Bureau of Indian Standard (BIS, 2012)

Groundwater quality Acceptable limit Permissible limit Min Max Mean
parameters (BIS, 2012) (BIS, 2012)

pH 6.5-8.5 - 6.0 8.3 7.2
Conductivity (EC) 200 600 325 1124 659.67
Manganese (Mn") 0.1 0.3 0.00 1.2 0.1
Iron (Fe*™) 0.3 No relaxation 0 11.28 0.74
Sodium (Na*) - - 4.8 79.6 31.304
Potassium (K*) - - 0.5 58 9.8
Calcium (Ca?") 75 200 2.2 87.6 37.49
Magnesium (Mg*") 30 100 1.4 61.6 29.86
Chloride (CI") 250 1000 1.14 122.8 22.6
Sulphate (SO,%) 200 400 0 116 27.7
Nitrate (NO5-) 45 No relaxation 0 799.3 83.69
Bicarbonate (HCO, ) - - 122 896 346
Phosphate (PO,*") - - 0.0 5 0.35
Arsenic (As) 0.01 0.05 0 58.32 13.5

*All values are in mg/L, except for As in pg/L, pH, and EC (uS/cm).

given in Table 2. For cations, the order of dominance
was found to be in the order Ca>*>Na"™>Mg?">K". The
Ca’" and Mg?" ranges from 2.2 to 87.6 mg/L with mean
of 37.49 mg/L and from 1.4 to 61.6 mg/L with mean
29.86 mg/L, respectively. This indicates that weathering
of calcium- and magnesium-rich minerals such as
calcium carbonates, feldspar minerals, and dolomite is
the prevalent process in the region. Earlier studies have
also confirmed the presence of these minerals in the
active floodplains of the River Ganges (Bhattacharya et
al., 1997). Na" ranges from 4.8 to 79.6 mg/L with mean
of 31.3 mg/L. K" ranges from 0.5 to 58 mg/L with mean,
9.8 mg/L. Additionally, the weathering of K* bearing
minerals i.e., K-feldspar and anthropogenic activities
such as the use of fertilisers might also contribute K*
in groundwater. Fe ranges within bdl-11.28 mg/L with
a mean value of 0.74 mg/L.

Hydrochemical Facies of Groundwater

The piper plot has been used to summarise the hydro-
geochemical characteristics of groundwater (Piper,
1944). Na* and Mg?" were found to be the dominant
cation, while SO42‘, CI" and HCO;” were the dominant
anions in the north and northwestern part of the study
area (Figure 2a). The samples were classified as Ca-SO,,,
Na-Cl and Na-HCO, type, which represents surface
seepage and freshwater recharge in the aquifer (Singh et

al., 2011, 2018). Further to the south, the groundwater
type changes to Mg-HCO, type. The water type Mg-
HCO; extends in the Sharda alluvial fan to south of
the Ghaghara River, indicating temporary hardness in
the groundwater. In the centre of the study region, the
dominant groundwater type is Ca-NO,, Na-Cl, and Mg-
HCO; indicating the mixed type water facies influenced
by anthropogenic activities. This might also be due
to the mixing of surface recharge and surface sewage
within the aquifer. The piper diagram shows that most
of the groundwater samples with high As had Mg-HCO,
water type (Figure 2a).

Ca’" and Mg?" were found to be dominant among
cations, and HCO;™ was the dominant anion indicating
reducing conditions in the region. Few studies suggest
that alkalinity in groundwater is influenced by rainfall
and soil interaction. The carbonic acid (H,CO,) is
produced by the interaction of dissolved CO, and
rainfall (H,O), resulting in the formation of HCO;
and H' ions. The HCO; penetrates down in the soil
and initiates the weathering of minerals present in
the aquifer (Salama et al., 1999). This is supported
by the presence of abundant Ca?>" and Mg?" in the
groundwater samples indicating weathering of carbonate
and silicate rocks in the basin (Kumar and Singh,
2015). The dominant dissolution of both calcite and
dolomite is shown in Figure 2b, which indicates the
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Figure 2: (a) Piper diagram of groundwater samples showing water facies, (b) spatial pattern of the
ratio of Ca?* and Mg?* across the study area.

groundwater Ca®>"/Mg?" molar ratio. The Ca**/Mg?*
molar ratio is equal to one indicating the dissolution
of dolomite, while a greater value represents a calcite
dissolution. Ca*"/Mg?" ratio, greater than 2, represents
the dissolution of silicate minerals into the groundwater
(Huq et al., 2018). While, 43.3% of the groundwater
samples had a Ca?"/Mg?" ratio between 1 and 2, which
indicates that dissolution of calcite. About 23.3% of the
samples only had a higher ratio than 2, which showed
the minimum effect of silicate minerals that contribute
Ca?" and Mg?" to the groundwater. Around 33.3% of
samples were indicative of the dissolution of dolomite
with Ca?*/Mg?* ratio <1 (Figure 3).
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Figure 3: Scatter plot depicting the Ca?"/Mg?*
molar ratio.

The spatial pattern of the ratio of Ca*" and Mg?*
showed the variation from the northwest to the southeast
and central parts of the plains. The ratio was the
highest towards the north due to the increase in Ca®"
concentration through the weathering of silicate in the
recharge area. Chemical composition of groundwater
may also be altered by the mixing of freshwater
recharge from rainwater, residence time and soil-water
interaction (Se et al., 2018; Saha et al., 2010). To
further understand the contribution of the processes
such as evaporite dissolution, silicate weathering and
carbonate dissolution, a bivariate mixing diagram of
Na-normalised Ca®" versus Na" normalised Mg?" and
HCO; was plotted (Figure 4a). Most of the groundwater
samples from older alluvium show dominance of
silicate weathering (Figure 4a and 4b). Samples from
younger alluvium tend to be more towards the carbonate
dissolution than to silicate and dolomite weathering. The
ratio decreased with the distance from the weathering
zones towards the recharge zone in the northern part.

Topographic, Geological and Climatic Controls on
As Contamination

Out of the total 30 samples, 40% (n = 12) were found
to have As above permissible limit of 10 pg/L as
recommended by WHO and the BIS (BIS, 2012; WHO,
2011). The As concentration is less than 10 pg/L in the
northern part and more than 10 pug/L in the south and
southeast part of the study area. It could be possible
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due to an accumulation of finer sediments deposited
along the course of river Sharda or due to some local
effects. Figure 1 also shows that all samples belonging
to the older alluvium have As<10 pg/L and samples in
the newer alluvium, were of mixed types. In our study
region, the As contamination is spread along the right
side of the river Sharda and between the doab regions of
Sharda and Ghaghara river. This suggests the important
role of depositional environment and geological age
in controlling As mobilisation in the basin. Further,
samples with high As concentrations are mostly present
in the relatively flat land formed by the doab of Sharda
and Ghaghara rivers (Figure 1). As the slope gradient
reduces, it minimises the flow of sediments brought
by the river to flow downstream and increases their
deposition in flat regions/plains. These regions have an
elevation range from 130 to 145 m. The elevation of the
area plays an important role in the As occurrence in the
groundwater (Singh et al., 2018). Samples with high As
concentrations are found in areas with low topography/
depressions (Figure 5). This result is consistent with
the research performed by Buschmann et al. (2007),
Shamsudduha, (2008) and Khan et al. (2016) from
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Figure 4: (a) Bivariate Na* normalized plot between
HCO; and Ca’', (b) bivariate Na* normalised plot
between Mg?" and Ca?'.

Bangladesh as well as from Bihar, where the handpumps
with high As are located within topographic depressions
(Saha and Sahu, 2016).

A study by Kumar et al. (2018) using groundwater
level data from the three monitoring stations in
the district showed a significant declining trend of
groundwater level for both the pre-monsoon and post-
monsoon season. The Mann-Kendall statistic for the
groundwater level for pre-monsoon for the period of
1990-2016 over three monitoring stations shows the
significant decreasing value of —3.107, —1.711 and
—2.251, respectively. The analysis of groundwater level
data for the last 25 years reveals an average declining
trend at the rate of 0.067 m/yr (Figure 6). The data from
10 monitoring stations were used to study the trend
of groundwater level fluctuation out of which seven
monitoring stations showed a declining trend varying
between 0.38 m/yr and 0.009 m/yr with an average of
0.12 m/yr (Table 3). The rainfall in the district is high,
however, 70% of the total rainfall results in runoff;
thus, little recharge of groundwater takes place. The
long-term trends observed for rainfall show a declining
trend of 1.97 mm/yr and the temperature shows an
increasing trend of 0.0049°C/yr (Figure 7). Thus, the
decrease groundwater recharge accompanied by higher
runoff might also impact the mobilisation of As in
groundwater.
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Figure 5: Distribution of As with respect to the topography
of the study area.



Table 3: The trend observed for the 10 groundwater
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level monitoring stations

S. No. Monitoring stations

Trend line equation
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y = -0.0163x + 5.0072
y = 0.0048x + 3.9886
y = -0.0425x + 2.9718
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y = -0.0438x + 10.321
y = -0.3897x + 11.055
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The groundwater level fluctuation as a result of
climate variability may increase the groundwater
temperature and thus enhance sulphide weathering
majorly influenced by groundwater level decline. The
increased oxidation of sulphide minerals owing to a
decline in the water table may enhance the concentration
of dissolved minerals which is influenced by the toxic
environment in the aquifer (Appelo and Postma, 2005).

Falling water tables enhance the exposure of rocks
to oxygen, which diffuses through the unsaturated
zone; the relatively low diffusivity of oxygen in water
limits sulphide oxidation in the saturated zone (Pili
et al., 2013; Todd et al., 2012). Therefore, the newly
exposed rocks might contain fresher sulphides and thus
more reactive mineral surfaces such as those without
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Figure 6: Groundwater level fluctuation with a declining trend in 7 out of 10 monitoring stations in the region.
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coatings of secondary minerals. Reduced groundwater
flow results in more geochemically evolved groundwater
that would be prominent in contributing to flow increase
during prolonged low-flow periods due to less recharge.
This would also result in increased residence time and
therefore extensive water-rock interaction leading to
a more favourable environment for As mobilisation
by reductive dissolution and alkali desorption. Even a
slight change in groundwater temperature might result
in decreased dissolved oxygen; thus, redox potential
impacting the As mobilisation by reductive dissolution.
In particular, a very high As concentrations may occur in
downgradient areas that already contain geochemically
evolved groundwater as observed in the groundwater
samples of the study area. The experimental study also
demonstrates that As gets precipitated during the SO,*
and Fe reduction which is associated with changes in
the groundwater level (Kirk et al., 2010).

Depth Profiles

Most of the samples were from the shallow handpumps
with an average depth of 0-20 m, but few households
with depth up to 35-38 m were also sampled (Figure
8a-h). The presence of Ca**, Mg, Fe, CI', HCO; in
high concentrations indicates soil mineralisation at
shallow depths. The shallow aquifers have no defined
pattern for EC as well as other ions for samples with
low As (Figure 8a). However, for samples with high
As, there is a pattern found along with depth. Most
of the samples with elevated As concentrations were
confined to depths of 6-15 m (Figure 8c). The shallow
aquifers are found to be contaminated with As in
the state of Bihar whereas the deeper aquifers (>60
mbgl) are found to be free from contamination from
both sides of the river Ganga (Saha et al 2010; Saha
and Shukla 2013). These observations are directly in
line with previous observations by Bhattacharya et al.
(1997) and Mukherjee et al. (2018), where high As
was reported at shallower depths of 6-13 m. In half of
the samples, a high concentration of As was associated
with a high concentration of HCO;™ in the groundwater
samples taken at a depth between 6 and 15 m (Figure
8d). The low concentration of HCO; was found mostly
in samples with low As at depth between 3 and 7 m.
Studies suggest that this pattern corresponds to the most
important anion species, which competes with As for
adsorption sites at mineral surfaces (e.g., Fe and Mn
oxyhydroxides and clay minerals), which consequently
releases As into the groundwater (Mukherjee et al.,
2018).

Discussion

Almost 90% of the samples have EC in marginal
category (500-1500 pS/cm). However, no relationship
was found between As and EC in the groundwater of
study area. The spatial distribution of As is found to be
variable and heterogeneous in nature. Low concentration
of As was found in the groundwater samples located
in regions of steeper slopes. The lower the slope more
higher is the As concentration (Wang et al., 2018).
This can be seen from Figure 6 which confirms that
low-lying plains would have high As concentrations
in groundwater (Buschmann et al., 2007). Similar
relationships have been identified by other studies in
the Bengal and Mekong river basins (Mukherjee and
Fryar, 2008; Buschmann, 2007). Sharda river basin has
frequent monsoon floods, forming a lot of abandoned
channels. This leads to waterlogging, which causes
surface water retention, resulting in the reaction of CO,
and water and leading to the formation of carbonic acid,
which then percolates into the subsurface (van Geen et
al., 2008). Since carbonic acid is a weak acid, it breaks
downs into HCO;™ and H' ions. This contributes to
HCO; in the aquifer, leading to reducing conditions
in the aquifers (Postma et al., 2016). The groundwater
samples have a very high concentration of HCO;,
thus, resulting in reducing conditions in groundwater.
Low NO, was observed in high As samples. As a
result of denitrification, the reduction of the NO; to
ammonia occurs along with the formation of HCO; .
Few high NO;" samples were found that could be due
to anthropogenic activities (Mueller et al., 2018). It can
also be seen that there is an overall negative correlation
between As and NO; (-0.21) although the value is not
very significant (Table 4). Furthermore, this sequential
microbially mediated process of denitrification, metal
reduction, sulphate reduction (NO;, Mn, Fe and
SO42') plays a significant role in mobilisation of
As in the groundwater (Mahanta et al., 2015). The
dissolution process of iron oxyhydroxides causes
surface desorption of As from these oxides, resulting in
increased concentrations of As along with HCO, and Fe
in groundwater. Figure 8b shows that in a few samples,
the high concentration of As was associated with a high
concentration of HCO, which was found to be confined
to a depth between 6 and 15 m.

The low HCO; concentrations are found mostly
in samples with low As at depth between 3 and 7 m
(Figure 8c and 8d). This pattern corresponds to the
most important anion species, which competes with
As for adsorption sites at mineral surfaces (e.g., Fe and
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Figure 8: Depth profile of the major cations and anions along with pH and EC with As in log plot,
blue circle denotes As < 10 pg/L and the red circle indicate As > 10ng/L.

Mn oxyhydroxides, and clay minerals), consequently
releasing As into the groundwater (Mukherjee et al.,
2011; Mahanta et al., 2015). We have also observed a
high positive correlation among Fe and Mn (0.86) and
Al (0.59) indicating their common source of origin.
This indicates that minerals comprised of these metals
such as Mn oxides, Fe oxides and Al oxides are the
sources for As. This observation is supported by poor
correlation (-0.21) between As and NO; (Figure 8g),
which highlights that apart from dissolved O,, NO; is
another thermodynamically favoured electron acceptor
for microbial degradation of dissolved organic matter
in the shallow aquifers of the study area (Rowland et
al., 2017).

Moreover, there is a positive correlation observed
between Fe and PO,* (Table 4). The competitive
exchange of anions by PO43' and desorption from metal
oxide surfaces due to the increased alkalinity may also
be responsible for mobilisation of As (Stollenwerk et al.,
2007). In contrast, PO, is adsorbed strongly onto solid
phases of mainly Fe and Al oxides in soils (Zahid et al.,
2008). However, the amount of PO43' released into water
is related to the concentration of PO,* that exceeds
the capacity of Fe to create insoluble iron phosphate.
However, PO,*" may be released into groundwater due

to microbially mediated reductive dissolution of Fe-
oxyhydroxides (McArthur et al., 2004). Furthermore,
K* and PO, also have a positive correlation and could
reflect their common source of origin which can be
anthropogenic, mainly the fertilisers.

Figure 9 depicts that there are few samples that
have high Fe and Mn along with high As however
not all the samples show a similar relationship. This
lack of correlation between Fe and As indicates the
decoupling between mobilisation of As and Fe (Table
4). Mueller et al., 2018, also suggested that the process
which mobilises As and Fe are decoupled, which
could be due to reprecipitation of Fe after reduction
of Fe oxyhydroxides, while the mobilised As remains
in a soluble form. This low Fe concentration can also
be due to its precipitation to a stable phase from an
unstable Fe-oxyhydroxides phase (Guo et al., 2013).
Since there is low SO42' concentration, Fe does not
precipitate as pyrite. However, it might precipitate as
siderite. Studies suggest groundwater with high HCO;
and high Fe, show siderite formation, which leads to
limited availability of Fe in groundwater. There is a
poor but positive correlation among As and Fe (0.28),
Mn (0.11) and Al (0.31). Similar findings have been
reported where the poor correlation between As and
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Table 4: Correlation among various parameters measured for the samples collected across the Sharda river basin

As EC Mn*  F&*  Nat K' Ca’t Mg Cr SO/ NOy HCOy PO/-
As 1
EC -0.15 1
Mn* 0.11 0.39" 1
Fe* 0.28 -0.02 031" 1
Na* -0.47 039" 0.28 -0.27 1
K* 0.04 0.48™ 0.89” 031" 036" 1
Ca’  -029 0.65™ 043 004 031" 049" 1
Mgt 0.19 0.10 0.29 031" -0.13 0.18 0.28
Cr -0.39" 055 020 -0.17 0.72"" 034" 053" -0.13 1
S042‘ -0.39"  0.38" 031" -0.10 042" 034" 0.62" -0.08 0.73" 1
NOy -021 037" 023 0.01 -0.02  0.08 0.40"  0.52 0.00 0.13 1
HCOy 0.55" -0.18 0.27 0.25 -0.12 032" -0.17 0.26 -0.09 -0.21 -022 1
p043_ 0.10 0.35%  0.97" 0.28 0.25 0.89"" 0.40° 0.27 0.17 0.24 0.19 0.29 1
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Figure 9: Scatter plot between As (log plot) and other water parameters, blue circle denotes
As <10 pg/L and the red circle indicates As > 10 pg/L.
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Fe have been found (Nickson et al., 2000; Mahanta
et al., 2015). Thus, it can be stated that the process of
reductive dissolution of Fe-oxyhydroxides is found as
the major mechanism for As release in groundwater in
the Sharda river basin. The study area, which is also
part of the active floodplain, where microbial oxidation
of organic matter takes place. This might lead to Fe-
oxyhydroxides reduction and high HCO, formation
due to silicate and carbonate weathering (Saha and
Sahu, 2016).

In the cultivation of rice, the flooded irrigation method
is the major agricultural practice in the region. Rice
cultivation can lead to the formation of an impermeable
layer of water between land surface and atmosphere.
Studies suggest that this might be responsible for high
organic matter content, which is oxidised by microbes
and leads to reducing conditions in shallow aquifers
(van Geen et al., 2014b; Williams et al., 2006). It can
be seen from Figure 1 that most of the high As samples
belong to the younger alluvium deposits. The studies
also suggest dissolved As remains to be high in areas
with restricted local recharge by the surface cover of
low permeability (van Geen et al., 2014b). Over the
past 30 years, there has been a shift in cropping patterns
resulting in an increase in cultivated agricultural area to
62.08%. Rice cultivation has increased from 2002-03 to
2014-15,1.e. 180163 to 182548 hectares increase in area
as compared to yield increase from 2.38 to 17.96 tonnes/
hectare over the same land holdings (Indiastat, 2014-
2015). This overburden on land leads to over pumping
of groundwater for irrigation purposes which might
have led to As dissolution in groundwater. Therefore,
the handpumps installed over newer alluvial deposits
might be more prone to As contamination.

Policy Implication: Switching to a Safe Well

The study indicates that the Sharda River basin is under
the threat of As contamination. Blanket testing can be
prioritised by the government or non-governmental
organisations. Results from this study can be used as a
guide for government and policymakers to downscale
their sites of action and provide interventions in the
affected regions belonging to newer alluvium. Further,
these regions can be targeted for proper mitigation
measures and access to As free drinking water can
be ascertained. Since the spatial distribution of As is
spatially heterogeneous; the use of reliable As field kits
can be incorporated to maximise testing of handpumps
along with quality control. Alongside, well switching is
a significant mitigation option in As affected areas until

a long term sustainable solution is established. However,
the viability of well switching is based on blanket
testing of the handpumps. In Bihar, indulging handpump
owners into a social network leading to safe drinking
water have been tried to address this problem. This
resulted in people’s ability to differentiate safe/unsafe
handpumps and share among neighbours (Barnwal et al.,
2017). This is an example of regular interventions after
the baseline survey resulted in 30.5% higher switching
to a safer well. Similar patterns of switching results of
26-41% were obtained in Bangladesh by community
participation. The costs and logistics of treating and
supplying water are considerably higher and most of the
time have been prohibitive due to logistics, its operation
and maintenance issues.

For most cases in the Gangetic plains, the local
population uses traditional cleaning and filtering due
to lack of alternatives for maintaining a clean drinking
water supply for themselves (Ahmad et al., 2003).
Alternatively, the use of groundwater received from
As-free deep handpumps can be used. Researchers
have conducted studies in parts of UP and Bihar, in
the middle Gangetic plain, and have emphasised on
the usage of deep aquifers for drinking water supply
(Ramanathan, 2015; Saha et al., 2011; Singh, 2015).
These alternatives are viable options that may potentially
influence the human ability to access As-free drinking
water and reduce health risks. Awareness of the current
quantitative and qualitative status of groundwater in
the location of high As-risk zones located in the newer
alluvium in conjunction with socio-economic factors,
therefore, can be crucial to determining the potential
exposure of people due to As.
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Errata

Please read Table 2 and Figure 1 on page 61 of Volume 6 Number 1 issue of
Journal of Climate Change as given below.

Table 2: Physical and physiological parameters of the
study participants

Variables Values
Stature (cm) 158 + 4.85
BW (kg) 55.4 +3.31
BMI 21.0 £ 4.55
HR, o (beats.min) 70.0 + 3.58
SBPpre.yorc (mm Hg) 119.0 £ 10.80
DBPPre-work (mm Hg) 74.0 £ 9.38

Data presented as AM £SD
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Figure 1: Environmental condition in terms of WBGT, CET, MDI and P,SR.




