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Abstract: The Rangit Gondwana Basin of Sikkim in the lesser Himalaya witnessed a wide span of climate change
during the Permo-Carboniferous period. The principal objective of the present study is to document this Permo-
Carboniferous climate change in the form of a geochemical signature preserved in the siliciclastic facies of the
Rangit Pebble Slate Formation. The stratigraphic sequences of the Rangit Gondwana Basin are categorically well
defined and subdivided into upper and lower sequences on the basis of their depositional environment. The lower
sequences of the Rangit Gondwana basin are comprised of massive diamictite with large stromatolitic dolomite
boulders and dropstone embedded in the coarser sandstone which indicate the cold glaciomarine environment of
deposition, whereas upper sequences consist of repeated alternate beds of sandstone, black shale and coal seam
with a regular interval depicting the fluvial and deltaic environment of deposition. The enrichment of SiO, Al,O,
TiO,, MnO, MgO, and K,O indicates that these sediments were mostly derived from felsic rock source areas.
Chemical Index of Alteration (CIA) and Index of Compositional Variability (ICV) CaO + Na,O + K,0/AlL,0;,
and SiO, vs. (Al,O, + K,O + Na,O) values suggest that the sediments maturity and paleoclimatic environment
deposition of the sediments of lower sequences was cold and semi-humid whereas the deposition of sediments of
upper sequences was warm and humid. The A-CN-K ternary plot and CIA vs ICV binary plot also indicate and
verify that the source areas were subjected to prolonged intense chemical weathering from low to high grade due
to shifting of cold to warm humid paleo-climatic condition.
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Introduction

The Late Paleozoic Ice Age (LPIA) is considered one
of the significant episodes of Permo-Carboniferous
climate change on the earth which has been recorded
and documented in almost every continent in the
form of glacial and post-glacial sea-transgressive
lithofacies (Eyles, 1993; Gamundi, 2010; Histon
et al., 2013). The Permo-Carboniferous Himalayan
Peri-Gondwana sedimentary sequences are well
developed across the entire Himalayan countries
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i.e. China, India, Pakistan, Nepal and Bhutan. In
Gondwana master basin of peninsular India, it is
characteristically categorized into Upper and Lower
Group of Gondwana sequences which are also known
as Damuda Group. The sedimentary sequences of
the Lower Gondwana Group are characterized by
diamictite/tillites, sandstone and shale facies which
were derived from glacio-fluvial and/or glacio-
marine sedimentation. Whereas, the Upper Gondwana
Group shows the deposition of sandstone, shale and
interbedded coal sequence which indicate fluvial,
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lacustrine and marine paleo-depositional environment
(Mukhopadahya and Bhattacharya, 1996; Ghosh et al.,
2004). The Lesser and Tethyan Himalayan sequences
of Kashmir, Himachal Pradesh, Arunachal Pradesh and
Sikkim also have the Gondwana sedimentary deposits
with identical depositional environmental conditions
(Raichaudhari, 2002; Rashid and Ganai, 2015; Priya
et al., 2019; Mahanta et al., 2020). In the present
paper, Gondwana sedimentary successions of Rangit
Gondwana Basin (RGB) and the Sikkim Himalaya have
been taken into consideration for the study of climate
change during the Permo-Carboniferous period. Rangit
Gondwana Basin of Sikkim Lesser Himalaya witnessed
global climate change from cryospheric/glacial to
warm humid environment. The authors have used the
normalised major oxides elements for the interpretation
of provenance and paleoenvironment of sedimentation.

The Chemical Index of Alteration (CIA), Index of
Compositional Variation (ICV), paleo-redox condition
and weathering trend have been used as a tool for the
evaluation of paleoclimatic conditions in the study area.
Based on the geochemical evidence, an attempt has
been made to reconstruct the climate-stratigraphy of
the Permo-Carboniferous sediments of Sikkim Lesser
Himalaya.

Geochemical Investigations

A total of thirty (30) fresh samples of sandstone and
shale were systematically collected from Permo-
Carboniferous sedimentary succession of Rangit
Gondwana Basin, Sikkim Lesser Himalaya (Figure 1).
Fifteen samples from each (lower and upper) sequence
of the Lower Gondwana Group in the Rangit basin
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Figure 1: Geological map of Sikkim Himalaya and study area (after Ray and Neogi, 2011; GSI, 2012; Chakarborty
et al., 2016; Priya et al., 2019).
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were geochemically analyzed by X-Ray Fluorescence
(PANalytical, Axios). Geochemical analyses of major
oxide elements like SiO, ALO; TiO,, MnO, MgO,
K,0 and Na,O present in sandstone and shale samples
were performed at the geochemistry laboratory in Birbal
Sahni Institute of Palacosciences (BSIP), Lucknow. All
the standard procedures have been followed for sample
preparation (Takahashi, 2015). Loss on Ignition (LOI)
was quantitatively measured by weight difference after
ignition at 1000°C.

Sequence Stratigraphy of the Study Area

Sikkim Lesser Himalaya is the amalgamation of
Lithostratigraphic sequences of different ages between
two recognized tectonic boundaries i.e. Main Boundary
Thrust (MBT) and Main Central Thrust (MCT, Figure
1). Further, it can be divided into two sub-sections
on the basis of different stratigraphic units i.e. Lower
Lesser Himalaya and Upper Lesser Himalaya (Ghosh et
al., 2016; GSI, 2012). The present study area falls under
the Upper Lesser Himalaya, which comprises Meso to
Neoproterozoic cherty, stromatolitic, microfossiliferous
Buxa Formation and Gondwana Group of Formation
(Schopf et al., 2008; Tewari, 2011; Raichaudhari, 2002;
Priya et al., 2019). The discovery of cyanobacterial
microfossils, stromatolite assemblages, and carbon
isotope chemostratigraphy of the Buxa Formation
dolomite firmly established a separate stratigraphic
unit separating it from Gondwana Group (Figure 1) of
Sikkim Lesser Himalaya with an unconformity (Tewari,
2011; Schopf et al., 2008, Rey and Neogi, 2011) mapped
a new Formation i.e. Phong La Formation around
Rangit window which is siliciclastic (carbonate free) in
composition and has been assigned to be equivalent to
the Buxa Formation as shown in Figure 1. The upper
sequences of the Lower Gondwana Group consists of
repeated alternate bands of sandstone, shale and coal
seams (Figure 2a) with Glossopteris floral assemblages
(Acharya and Ray, 1977; Raichaudhari, 2002; Priya
et al., 2019). While the lower sequence of the Lower
Gondwana Group is composed of boulder beds, massive
diamictite, sandstone and olive green shales which
are included under the Rangit Pebble Slate (RPS)
formation (Figures 2 b, ¢ and 3). The Rangit Pebble-
Slate Formation in Sikkim Lesser Himalaya of Upper
Carboniferous to Lower Permian age is equivalent to
Talchir Boulder Beds of peninsular Gondwana master
basin of India. Paleogeographically, it was once an
integral part of the Eastern Gondwana (Priya et al.,
2019).
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Figure 2: Field photograph (a) Repeated alternate bands
of sandstone and shale of upper sequence of Lower
Gondwana Group. (b, ¢) Pebble slate or/diamictite of
lower sequences of Lower Gondwana Group from Rangit
Gondwana Basin, Sikkim Lesser Himalaya well exposed

between Tatapani and Jorethang along the road.

&

The presence of marine fossils like Eurydesma and
glacial diamictite with large stromatolitic dolomite
boulders and dropstone embedded in the coarser
sandstone clearly indicates the influence of the
glaciomarine environment (Acharya and Ray, 1977;
Raichaudhari, 2002; Priya et al., 2019).

Siliciclastic Sediments Geochemistry and
Provenance of Rangit Gondwana Basin
Geochemical analyses of sediments (major oxide
elements) have been widely applied to interpret the
provenance of sedimentary basin, tectonic setting and
climatic condition in which they were deposited (Bhatia
and Crook, 1986; Roser and Korsch, 1986; Suttner and
Dutta, 1986). The concentrations of major oxides (wt.%)
in sandstone, massive diamictite and shale are plotted
along with the lithographic unit of upper and lower
sedimentary sequences of Lower Gondwana Group of
Rangit Gondwana Basin of Sikkim Lesser Himalaya
(Figure 4). The sandstone and massive diamictite
contain a high concentration of Si0, (74.53 - 91.32 %.)
due to the dominance of quartz in it, whereas, black
shale and olive green shale contain a low concentration
of Si0, (21.45- 42.61 %) as given in Table 1 and Figure
4. Other major oxides such as Al,O; Fe,0; TiO,, MnO,
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Figure 3: Lithostratigraphic succession of Buxa Formation,

lower and upper sequences of Lower Gondwana Group

well exposed in the Rangit Gondwana Basin (Rangit
Window, Figure 1).

MgO, CaO, Na,O, K,O are also plotted (Figure 4) to
depict the concentration of each element. The ratio of
K,0/Al,0O; is distinctly helpful to depict the content of
clay and feldspar in the siliciclastic sample. The range
of K,0/Al, O, ratio varies from 0.16 to 0.31 for clay
minerals and 0.3 to 0.9 for feldspar (Cox and Lowe,
1995). In the present study, the siliciclastic sediments
(massive diamictite and coarser sandstone) of the lower
sequence have a higher value of K,0/Al,O, which
ranges between 0.48 and 0.82 due to undecomposed
feldspar grains. It implies that these sediments (lower
sequence) were deposited under the cold environment.
Whereas the sediments (rocks) of upper sequences
contain more clay minerals that ranges from 0.16 to
0.31 due to consequences of intense weathering in a
warm and humid climate. The low content of Na,O in
the upper sedimentary sequences of rocks also suggest
its maturity and removal of alkali elements (K, Na)
from the sediments.

Black shales of upper sedimentary sequences are
characterised by the elevated concentrations of Al,O;
TiO,, MgO, Na,O, and K,O as compared with olive
green shale of lower sedimentary sequences (Figure 4).
Compared to sandstones, the higher proportion of TiO,
in the shales may be related to the existence of heavy
minerals such as rutile and zircon in them.

Geochemical Proxies and Paleoclimatic
Implication

Five important geochemical indexes have been
used for determining the intensity of weathering
and paleoclimatic condition of Lower Gondwana
sedimentary sequences of Sikkim Lesser Himalaya.
These geochemical indexes are: (a) Chemical Index of
Alteration (CIA), (b) Index of Compositional Variation
(ICV), (c) CaO + Na,O + K,0/AlL,0;, (d) A-CN-K
ternary/triangular plot and (e) SiO, vs. (AL,O, + K,O
+ Na,O) binary plot for detail investigation.

(a) Chemical Index of Alteration (CIA): It is one
of the most important paleoclimate proxy-based
on feldspar alteration during the geochemical
weathering of sediments and provides access to
calculate the intensity of weathering by following
the equation given by Nesbitt and Young (1982),

CIA = [ALO, / (AL,O; + CaO" + Na,O + K,0)] x 100

where the major oxides of elements (Al,O; Na,O
and K,O) are expressed in molar proportion while the
remaining content of CaO” is incorporated into the
silicate fraction of samples (McLennan, 1993). The CIA
value has been widely applied for both glacial deposits
(Condie et al., 2001; Scheffler et al., 2003; Dobrzinski
et al., 2004) and non-glacial deposits (Aristizabal et
al., 2005; Kahmann et al., 2008). The variation of CIA
value from 45.26 to 70.33% with an average of 53.21%
clearly signifies the dominance of unaltered feldspar
due to weak weathering in a cold climate, whereas, the
comparatively high values of CIA (62.53 to 86.68%) in
the upper sequence of sandstone and shale indicated the
intense weathering and warm humid climate (Table 1
and Figure 5a). The index value of the CIA is combined
with alternate diamictite and sandstone facies to display
and reconstruct the variation in the paleoclimatic
conditions during sedimentation as shown in Figure
Sa. Further, CIA values of Rangit Gondwana sediments
(both upper and lower sequence) were compared with
other CIA values of rocks and minerals for better
understanding of geochemical behaviour of basin under
different climatic environment condition (Figure 6).
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Figure 4: A plot of various elemental oxides for Rangit Gondwana sediments (upper and lower sequences)
of Sikkim Lesser Himalaya.

The CIA values for Rangit Gondwana Basin ranges
between 45.26 and 86.68% which is relatively the same
values of granite to average shale and very close to
[llite clay mineral of the other world basin (Nesbitt et
al., 1996; Young, 2002). A plot between CIA and ICV
(Figure 5c¢) gives a typical weathering trend indicating
the shifting pattern of climate change through its
maturity of sediments (Nesbitt and Young, 1984; Cox
et al., 1995). A relationship between CIA and ICV
suggests that lower sedimentary sequences of Lower
Gondwana sediments are weak to moderately matured
and have been less weathered due to cold climatic
conditions whereas upper sedimentary sequences of
Lower Gondwana sediments are highly mature and have
shown intense weathering (Figure 5c).

(b) Index of Compositional Variation (ICV): The
compositional maturity of sediments has been
studied with the help of the Index of Compositional
Variability (ICV) which is being calculated through
an equation given by Cox and Lowe (1995) i.e.

ICV = (Fe, 04 + TiO, + MnO + MgO
+ Ca0 + Na,O + K,0)/ALO;

The different values of ICV infer the compositional
maturity of the sediments. If the values of ICV is
more than one, then sediment is considered to be
compositionally immature which was deposited in the
first cycle of deposition; whereas, if the values of ICV is
less than one, then it is considered to be compositionally
mature which get recycled and deposited in the stable
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Figure 5: (a) The characteristics of geochemical proxies (CIA, ICV and CaO + Na,O + K,0/Al,0O;) for the Rangit
Gondwana sediments (b) SiO, versus (Al,O; + K,O + Na,0) paleo-climate discrimination diagram for Rangit Gondwana
sediments of Sikkim Lesser Himalaya (after Suttner and Dutta, 1986) (c)A binary plot between ICV and CIA showing
the maturity and weathering condition for the Rangit Gondwana sediments (Nesbitt and Young, 1984; Cox et al., 1995).

tectonic environment (Cox and Lowe, 1995; Perri et al.,
2012). Minerals such as feldspar, are being converted
into aluminium (Al) rich clay minerals due to intense
weathering of sediments and this progressive weathering
trend decreases the values of ICV simultaneously (Potter
et al., 2005). In the present study, the lower sedimentary
sequences of the Lower Gondwana Group consists of
mainly massive diamictite or/pebbly —slate and coarse
sandstone and shows the high value of ICV (1.03 to
1.26), which inferred the compositionally immature
sediments and have a low degree of weathering
condition. The sandstone of upper sedimentary
sequences show lower values of ICV (0.46 to 1.04)
which indicate the compositionally mature sediments
and a high degree of weathering condition (Figure 5a).
Olive green shale of the lower sequence also indicates
immature shale and a high percentage of non-clay
silicate minerals with higher ICV values (1.14). While

the black shale dominates aluminum bearing clay
minerals with low ICV values (~ 0.6; Figure 5a).

(¢) CaO + Na,O + K,O/AlLO,: The ratio of
[(CaO+K,0+Na,0)/Al,05] is another important
geochemical indicator which has been used to
portray different depositional environments during
climate change. These elements (Ca, K, Na, Al)
are more active and sensitive to hydro-geochemical
changes and are affected during climate change
(Zhang et al., 2008).

A mineral like aluminum silicate is mostly altered
into different types of clay minerals (i.e. illite,
montmorillonite and kaolinite) during chemical
weathering. Thus, the value of [(CaO+K,0+Na,O)/
Al,O,] reflects the pattern of climate change during
sedimentation into the basin. A higher value of
[(CaO+K,0+Na,0)/Al,0,] for the lower sedimentary
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sequence (0.9 to 1.7) of the Lower Gondwana Group in
the Rangit basin indicates the low degree of weathering
in a cold climate. Whereas, a lower value (0.23 to
0.61) of upper sedimentary sequences strongly suggests
intense weathering in warm humid climatic conditions
(Figure 5a).

(d) A-CN-K ternary plot and (e) SiO, vs. (AL, O, +
K,0 + Na,O) binary plot:

The A-CN-K ternary plot and SiO, vs (Al,O; +
K,O + Na,O) binary plot have been used to depict the
intensity of weathering and paleoclimate environment.
Weathering trend and paleoclimate proxies provide clues
to unravel the paleoclimatic condition of deposition
(Suttner and Dutta, 1986; Nesbitt and Young, 1982).
A ternary plot of A-CN-K (Al, O, — CaO* + Na,O —
K,O) given by Nesbitt and Young (1982) is applied
to demonstrate the variable intensity of chemical
weathering (Figure 7).
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I Basalt
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I Feldspar
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lllite/ montmorillonite NG

Rangit Gondwana sediments I

I Average shale

Kaolinite/chlorite N

0 10 20 30 40
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100

Chemical weathering index (CIA)

Figure 6: A comparison of CIA for Rangit Gondwana Basin sediments with CIAs for rock
and minerals (Nesbitt et al., 1996 and Young, 2002).
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Figure 7: A-CN-K (Al ,0, - CaO* + Na, 0 - K,O) ternary plot of Permo-Carboniferous RPS sandstone and massive
diamictite associated with Chemical Index of Alteration (CIA). Squares symbolize the average composition of
Granite (Gr), Tonalite (T]l) and Granodiorite (Gd) with other minerals (after Nesbitt and Young, 1982).
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The samples of lower sedimentary sequences of the
Lower Gondwana Group in Rangit Basin are plotted
close to K-feldspar mineral which suggests a low grade
of weathering due to the cold glacial environment.
Whereas the sediments of the upper sequences of the
Lower Gondwana Group fall close to the Al, O; (A)
end and along with the Illite mineral indicating the
deprivation of K and Ca minerals from feldspar due
to progressive weathering of meta-sedimentary and
granite-like source rocks (Figure 7). Further, a plot
between elemental oxides of SiO, and (Al,O; + K,O +
Na,O) also confirms warm and humid paleo-climate.
The studied samples of lower sedimentary sequence fall
in the area of semi-humid climatic conditions while the
upper sedimentary sequence of Gondwana sediments
occupied a humid area (Figure 5b). Therefore, both
the A-CN-K ternary plot and SiO, vs. (AL,O; + K,O +
Na,O) binary plot clearly suggest and indicate that the
sediments of a lower sequence of Lower Gondwana
Group of Rangit Gondwana Basin were deposited under
a cold glacial environment whereas, the sediments of
upper sedimentary sequences of Rangit Gondwana Basin
were accumulated under warm and humid conditions.

Discussion and Conclusions

The sedimentary succession of the Rangit Gondwana
Basin (upper and lower sedimentary sequences) of Lower
Gondwana Group has been studied geochemically for
the interpretations of climate change during the Permo-
Carboniferous Period. The Gondwana Icehouse Period
spanned between the Mid-Carboniferous and Early
Permian waning by the early Late Permian in a high
paleolatitude (Lopez-Gamundi, 2010). The lithological
facies and sedimentological studies of lower sequences
clearly indicate the influences of glacio-marine
environment while the upper sedimentary sequences are
the consequences of fluvial-deltaic sedimentation. The
lithofacies of lower sequences indicate the development
of transgressive system tract (fining upward sequence)
due to glacioeustatic sea level rise and subsidence along
basin margin (Gamundi, 2010; Priya et al., 2019). The
upper litho-sequences with repeated alternate bands
of sandstone, black shale and coal seams depict the
fluvial and deltaic environment of deposition. The
geochemical signatures in the form of major oxides
have been interpreted with the help of various diagrams
plotted based on the geochemistry of the sediments.
The concentrations of major oxides have been plotted
along with the lithostratigraphic column to show the
variation in the concentration of various elements

(Figure 4). The massive diamictite, coarser sandstone
and fine sandstone are enriched with SiO, (Figure 4).
The sediments of the upper sequence is enriched with
Al O, indicating that sediments have gone through the
intense weathering in the presence of warm and humid
climate. Various plots i.e. Chemical Index of Alteration
(CIA), Index of Compositional Variation (ICV), CaO
+ Na,O + K,0/Al,O,, A-CN-K ternary plot and SiO,
vs. (AL,O; + K,O + Na,O) deciphered the climatic
and weathering condition of both groups of litho-
sequences (Figures 5 a-c, 6 and 7). Hence, the chemical
composition and weathering pattern of both upper and
lower sedimentary sequences of Rangit Gondwana
sediments are characteristically different from each
other due to variant paleo-climatic conditions. The lower
sequences of Rangit Gondwana sediments of Sikkim
Lesser Himalaya witnessed the cold (glacial) and semi-
humid paleoenviornment conditions, whereas upper
sequences of Rangit Gondwana sediments is influenced
by warm and humid climatic condition (Figure 5a-b).
The weathering trend also supports this paleoclimatic
conditions with maturity and weathering pattern of
sediments (Figures 5 a, ¢ and 7). This wide variation
of the depositional environment from cold to warm
indicates the paleo-global climate change and allows
us to reconstruct the paleogeography and paleoclimate
that prevailed during the Permo-Carboniferous period, a
major cryospheric or climate change on the earth. It will
also help us to understand the Peri-Gondwana extension
in the Tethyan realm of the Himalaya. Geochemical
signatures of the Gondwana basin of Sikkim Lesser
Himalaya indicate that lower and upper sequences
of the Lower Gondwana Group are compositionally
variable in terms of elemental concentration due to
different environmental conditions. The lithofacies
of the lower sequence of sediments witnessed the
influence of both cryogenic and marine environment
while the upper sequences are subjected to fluvial-
deltaic and warm-humid climate. The enrichment of
Si0,, Al,O,, TiO,, MnO, MgO, and K, O indicates that
these sediments were derived from felsic source areas
which might be derived from high-grade metamorphic
rocks and plutonic igneous rock. The Chemical Index
of Alteration (CIA), Index of Compositional Variability
(ICV), CaO + Na,O + K,0/ALO,, and SiO, vs. (AL,O,
+ K, O + Na,O) values also suggest that the deposition
of lower sedimentary sequences took place in the cold
environment and upper sequences in warm humid
condition. The A-CN-K ternary plots and CIA vs ICV
binary plot indicate that the source area was subjected
to prolonged intense chemical weathering from low
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to high grade due to shifting of cold to warm humid
paleo-climatic condition. This paleoclimatic variation
is also recorded from major Gondwana basins of the
Western Gondwana (Africa and South America) and
Eastern Gondwana (India, Antarctica and Australia;
Histon et al., 2013).
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