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Abstract: Carbon (C) cycling is being influenced by global climate change, which is altering the primary
productivity and the rate at which carbon is fixed, released and stored in vegetation systems on Earth. Carbon
sequestration is recognised as the storing of carbon dioxide (CO,) and other kinds of carbon for a long time. A
selective atmospheric carbon-based anthropic enrichment causes an environmental catastrophe, which necessitates
methods of mitigation. Algal primary production (which includes cyanobacterial algae, microalgal, and macroalgal)
is a key pathway for C biosequestration in the ocean. Many scientists and environmental professionals are concerned
about the rise in global temperatures and climate change. Increased quantity of carbon that can be absorbed from
the atmosphere by exploiting the ability of plants, particularly seaweed, to use CO, in process of photosynthesis
is one of the key solutions being given to prevent the earth’s rising temperature at a faster rate. The ability of
ocean plants to act as a carbon sink from anthropogenic sources (also recognised as “Blue Carbon”) has piqued
people’s interest. Marine primary producers are responsible for at least half of the earth’s carbon uptake and
up to 71 percent of all C storing. Seaweeds have important roles in the elemental cycles of coastal ecosystems,
mostly through the export of organic matter to neighbouring communities and the accumulation of carbon and
nutrients in the sediment.
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Introduction

Global warming is one of the global environmental
issues that has been broadly studied by environmental
specialists (Mashoreng et al., 2019; Azeez, 2021)
in recent years. A rise in the amount of supposed
greenhouse gases (mostly carbon dioxide), which traps
extra heat and warms the globe, in the air is the primary
driver of global heating (Trenberth et al., 2007). This
rising temperature affects a wide range of industries,
both directly and indirectly (Islam et al., 2020; Bhuyan
et al., 2020, 2021).

Humans can apply two fundamental methods to slow
the rate of global warming (Mashoreng et al., 2019).
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To begin, reduction of C released from human activities
and the usage of C origin that can raise CO, levels
in the atmosphere, like forest fires, fossil fuel energy
use, and so on. Second, increasing atmospheric carbon
sequestration by promoting vegetation’s or plants’ ability
to utilise and absorb CO, through the photosynthesis
process (Mashoreng et al., 2019). In addition to natural
flora in seaside locations, seaweed culture has spread
around the world. Cultivated seaweeds can absorb CO,
through photosynthesis (Hill et al., 2015; Pajusalu et
al., 2016; Duarte et al., 2017; Sengupta et al., 2017).
Seaweed and other plants contribute to the absorbance
of CO, from the atmosphere (Table 1). Since the
industrial revolution, the ocean has absorbed 25% of
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Table 1: Estimation of biomass, yearly CO, absorption, and other ecosystems’ potential CO, capture

Ecosystem  Area (km?) C assimilation (t km™) CO, sequestration (t km?)  References

Mangrove 139170 139-7210 510-24460 Duarte et al. (2005); Siikimaki et
al. (2012)

Saltmarsh ~ 22000-400000 >218180 >800060 Chmura et al. (2003)

Seagrass 319000 6270 22988 Siikimaki et al. (2012)

Forest

Temperate 10400000 n/a 5096 Schlesinger (1997)

Boreal 13700000 n/a 3599 Zehetner (2010)

Tropical 19622846 n/a 4000

N.B. n/a: not available

carbon emissions and is now suffering the repercussions
(GETF, 2020). Seaweed has the possibility to play an
important role in combating climate related impacts
by absorbing C emissions (Godin, 2020). Kelp has
the ability to absorb a considerable amount of CO,.
By 2050, the goal is to “re-wild” the ocean and trap
millions of tonnes of CO, (Azeez, 2021). Massive
volumes of seaweed are buried at the ocean’s bottom,
where they can store carbon for thousands of years
(NPR, 2021). However, the introduction of seaweed in
the international platform as a C balancing approach to
prevent climate change remains a concern. If seaweed is
not used correctly, the benefits of CO, sequestration can
be undone. If seaweed is produced just to collect carbon
and is not harvested, it will decompose, and emit the
CO, it has absorbed into the atmosphere (Godin, 2020).

To gather vital information, the potential for C
uptake by seaweed must be thoroughly investigated.
Negotiations for a blue carbon trade-in have so far been
hindered by a shortage of data on the C sequestration
capacity of sea resources. Furthermore, associated
parties require this information for the maintenance of
ocean resources. The goal of the current research was
to assess seaweeds’ C sequestration capacity and overall
carbon sequestration. In order to achieve such goals, it
is important to focus on resources to monitor seaweed
habitat trends and conserve existing seaweed resources
as an act to attenuate the causes of seaweed loss and
develop knowledge to revert ongoing seaweed decline.

Methodology

Related articles were found using the keywords “Carbon
sequestration by seaweed,” “Carbon sequestration by
kelp,” “Carbon sequestration by macroalgae,” “Climate
change mitigation by seaweed,” and “Role of seaweed in

climate change mitigation and adaptation” in databases
such as Google Scholar, PubMed, Dimension, Scopus,
Web of Knowledge, and others.

Recent Emission Trend of CO,

People are living at a time when atmospheric CO,
amounts are increasing at a rate that has never been
seen before in geological history. CO, emissions
by different countries in the world are tabulated in
Table 2. Annually, fossil fuel combustion and cement
manufacture emit 7.2 Pg C (1 Pg=1015 g), but forest
destruction and rapid change in land-use produce 1.6
Pg C/year (Denman et al., 2007). The seas have been
a key sink for anthropogenic CO, emissions since the
Industrial Revolution, accounting for 48 percent of total
emissions (Sabine et al., 2004). The annual oceanic CO,
sink, according to Behrenfeld et al. (2002), is 2+0.8
Pg C, withal a further 1.8 Pg C missing sink element
containing both oceanic and terrestrial biosphere
elements.

Despite the turndown from these abiotic and biotic
ocean activities, the air CO, pool is rising at ~4.1 Pg
Clyear (Denman et al., 2007). CO, concentrations in
the atmosphere have risen dramatically in the previous
~200 years, from 280 parts per million (28 Pa) in
1800 to 385 parts per million (38.5 Pa) now. The last
100 years have seen most of this increase (Denman et
al., 2007). Depending on the CO, emissions growth,
the most likely scenario is for a 2- to 3-fold increase
in air CO, levels during the next 100 years (Meehl et
al., 2007).

CO, Sequestration by Seaweed

According to Krause-Jensen and Duarte (2016), total
global carbon sequestration by seaweed is projected to
be 173 Mt C/yr (Figure 1). In a recent UK study, out of
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Figure 1: In comparison to global figures, production of
seaweed and detritus, and carbon storage in Scotland.
(Data source: Krause-Jensen and Duarte, 2016)

whole particulate C absorption rate of 58.74 gC/m/yr in
soil at a given site, just organic C uptake off secaweed
was 8.75 gCm?/yr on average (Queirds et al., 2019).
Burrows et al. (2014) calculated the Scottish seaweed
NPP to be 1.73 Mt C yr'!. In Scotland, C absorption by
seaweed is predicted to be 11.4 percent of NPP at 0.2
Mt C/yr when the outcomes of the 2016 examination
are applied to this count.

Kaladharan et al. (2009) investigated marine-algae
CO, assimilation and established that standing macro-
algae biomass crops along the Indian Coast can consume
9052 tons of carbon dioxide per day, reporting an 8867
t CO, gross daily credit for an emission rate of 365
tons of carbon dioxide. Because of their abundance and
massive biomass, Chlorophytes, such as Ulva lactuca,
were assessed to have the maximum CO, absorption
capability among the diverse taxa, after Phaeophytes
(Sargassum polycystum) and Rhodophyta’s (Gracilaria
corticata) (Kaladharan et al., 2009). Chlorophyta,
Phaeophyta and Rhodophyta played a great role in
primary production, that is carbon sequestration (Figure
2). Enormous-scale cultivation of marine macroalgae,
particularly commercially important species, has been
shown to lower CO, levels in the atmosphere (Table 3)
while also generating vast amounts of useable biomass
for biofuels and phycocolloid manufacturing (Migliore
et al., 2012; Chung et al., 2013).

Macroalgal beds have a greater Net Ecosystem
Productivity than other types of oceanic vegetation,
like phytoplankton and seagrass beds (Kim et al.,
2015). In terrestrial, freshwater, and marine ecosystems,
biomineralisation of atmospheric CO, as CaCO, is
prevalent (Ridgwell and Zeebe, 2005). In the oceans,

400 Chlorophyta (2a)

300

200

PS Rate (mg CO, g FW"' day™")

400 Phaeophyta (2b)

o
T A A IR

? PR
g S AR AR RS . M o
3> 9,+ & \)\Qs & @“‘ o & & & O & 6\&\0

400 Rhodophyta (2¢)

n W
8 8

PS Rate (mg CO, g FW! day™)
8

o

N4
& &
& &

N & (@
KRR & 5

& A&
« ‘Q\”*@ & &‘\Q
W

o° @\"’\G‘ ® s
& oF %,5\0‘» ‘«\\0 §° oF

o
& a°°

PN @

Figure 2: Rates of primary production for different types

of seaweed: 2(a) Chlorophyta; 2(b) Phaeophyta and 2(c)
Rhodophyta. (Source: Chung et al., 2011)

the majority of biomineralisation occurs by biological
mechanisms (Jansson and Northen, 2010). In this sense,
calcifying macroalgae play a significant role.

The reaction(s) that occur during calcification are
depicted in equations (2) and (3):

Ca”* + 2HCO; = CaCO, + CO, + H,0 (Reaction 1)
Ca®" + CO}” = CaCO, (Reaction 2)

The fall in the pH of sea water is triggered by rising
CO, concentrations, a phenomenon known as “Ocean
Acidification” (Doney et al., 2009). Even though lower
pH is a reason for interest in the survival of calcifying
seaweed, in situ works on Padina sp. have shown that
the seaweeds are more abundant under high CO, levels
(Johnson et al., 2012), pointing out that photosynthesis
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Table 3: Carbon sequestration rate by seaweed

Types of seaweed

Ecosystems Carbon sequestration rate References

Kappaphycus alvarezii Marine 0.660 mgCO,.gdw.h'! Mashoreng et al. (2019)
Eucheuma spinosum Marine 11.997 mgCO,.gdw ! .h’! Mashoreng et al. (2019)
Gracilariaverrucosa Marine 0.286 mgCO,.gdw.h"! Mashoreng et al. (2019)
Caulerpa lentillifera Marine 0.927 mgCO,.gdw.h"! Mashoreng et al. (2019)
Laminaria hyperborea Marine 11.49 Tg C year’! Pessarrodona et al. (2018)
Seaweeds Marine 173 Tg C year’! Krause-Jensen and Duarte (2016)
Macroalgae Marine -1 PgC year! Chung et al. (2011)
Kelp Marine 7.50 Tg C year'! Reed and Brzezinski (2009)
Seagrass and macroalgae Marine -1 PgC year! Schippers et al. (2004)
Marine macroalgae Marine 3 x 107 PgC year! Gao and McKinley (1994); Jackson
(1987); Muraoka (2004)
Kelps (Macrocystis sp. and Laminaria sp.) Marine >3 x 10712 PgC year! Gao and McKinley (1994)
Macrocystis integrifolia Marine 1.3 x10°8 PgC year’! Wheeler and Druehl (1986)
Laminaria japonica Marine 2.2 x 108 PgC year! Chao-yuan et al. (1984)

and calcification are intertwined (Okazaki et al., 1986).
Furthermore, enhanced photosynthesis due to higher
CO, concentrations partially offsets increased CaCO,
dissolution caused by low pH (Johnson et al., 2012).
While lower CaCO, deposition in Padina sp. tissues
was observed as a result of habitat water acidity and
larger macroalgal biomass was anticipated to result in
higher CaCOj, precipitation and, as a result, higher C
sequestration in the intertidal zones.

The massive growth of macroalgae, frequently as
mats of moving, littoral, benthic, or epiphytic seaweed,
are common in estuarine habitats. However, it has
been proven that these have a deleterious impact on
microbenthic communities (Sundback et al., 1990,
1996), different benthic biotas (Den Hartog, 1994), and
macrofauna (Norkko and Bonsdorff, 1996; Sundbéck et
al., 1990, 1996). 1A rise in the C substance of the soil is
discovered by shifting some of the C, which is absorbed
through the growth of sediments underneath them
(Corzo et al., 2009). Pyrolysis of wild or commercially
farmed seaweed is a different and focused way of C
biosequestration using seaweed. Bird et al. (2012)
found that pyrolysis of seaweed biomass yields biochar,
which increases nutrient retention while lowering N,O
emissions from agricultural soils (Cayuela et al., 2013).
As aresult, the use of biochar for both soil C absorption
and the rehabilitation of barren sediments has been
recommended (Roberts et al., 2015). Seaweed DNA was
found in the garbage on the ocean bottom, and this data
suggested that 70% of the seaweed analysed had sunk
to a depth of 1000 meters. This conclusion is critical

for CSS since it implies that any carbon collected by
seaweed is released into the atmosphere.

Conclusion

Carbon sinks have been detected in vegetated coastal
ecosystems. Marine seaweed has been largely ignored
in discussions of marine C sinks, compared to other
ocean ecosystems (e.g., salt marshes, seagrass, and
mangroves). Although seaweeds are considered as the
key producers in the coastal ecosystem, they rarely
flourish in environments that are thought to store
considerable amounts of organic C. The decline of
seaweed bed ecosystems has resulted in significant
changes in the coastal area’s species richness, fertility,
and sediment equilibrium. Therefore, planning/steps to
restore seaweed is very important for sustainable sea
resources. However, seaweed carbon has been found
in the deep-sea region, where it can effectively suck
carbon out from the atmosphere. According to these
findings, seaweed could be a significant carbon-storing
component of the marine ecosystem. Policy makers
should give emphasis to the huge expansion of seaweed
cultivation considering its carbon-reducing capacity.
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