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Abstract: The Nonstationary analysis drew formidable attention to the flood frequency analysis (FFA) research 
community due to analytically perceivable impacts of climate change, urbanisation and concomitant land use 
pattern on the flood event series. Albeit, the inclusion of nonstationarity in FFA significantly enhanced the accurate 
estimation of the return period, however, its application is questionable when the flood variables (FV) are not 
having persisting significant nonstationarity. In such cases, the assumption of stationarity is still valid and will 
direct to accurate estimation of the flood quantiles. Hence, prior to conducting the comprehensive FFA, it is vital 
to inspect the existence of stationarity/nonstationarity in the FV. This can be accomplished by a comprehensive 
trend analysis. The aim of present study is to emphasize the importance of a comprehensive trend analysis during 
FFA by proposing a framework to conduct the same. Further, the proposed framework has been demonstrated 
on unregulated daily streamflow series of two gauging stations, at the Kanawha Fall of Kanawha River, West 
Virginia, USA, and at the Baltara gauging station of Kosi River, Bihar, India.

The results show that the annual maxima (AM) delineated flood peak series has a significant trend in both the 
gauging stations, providing sufficient evidence of nonstationarity, which is modelled by first- and second-order 
nonstationary analyses. A comparison between first-order and second-order nonstationarity analyses has also 
been performed, which suggests higher order nonstationary analysis might give more accurate information on the 
occurrence of flood extremes. Overall, our study highlights that the proposed framework is an important initial 
step before initiating FFA to avoid the ambiguity between the selection of stationary and nonstationary analysis. 

Keywords: Climatic variability; Frequency analysis; Nonstationary; Nonparametric; Return period; Trend analysis; 
Urbanisation.

 Introduction

Flooding is a destructive natural hazard, which can 
cause loss of lives and livelihoods at a massive scale 

and requires various mitigative measures; such as 
construction of adequate downstream flood defences, 
efficient forecasting and proper land-use management 
(Kidson and Richards, 2005). All these mitigative 
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measures require some information regarding hazard 
component of flood risk through a comprehensive and 
accurate flood frequency analysis (FFA). FFA defines 
the severity of a flood event by summarising the flood 
variables/characteristics, i.e., Peak (P), Volume (V), 
Duration (D) and Average Intensity (I) and by estimating 
their mutual dependence structure. It is often required 
for planning (Stedinger and Griffis, 2008), designing 
(Haddad and Rahman, 2012; Hirsch and Stedinger, 
1987), operation of hydraulic structures (De-Michele 
et al., 2005), and also to spatially map flood risk 
combined with vulnerability and exposure for urban 
or riverine flood management (Karmakar et al., 2010). 
Recently, there are many studies (Choulakian et al., 
1990; Karmakar and Simonovic, 2008, 2009; Yue, 2001; 
Yue and Rasmussen, 2002; Yue and Wang, 2004; Zhang 
and Singh, 2006, 2007) indicating the advancements 
in FFA to obtain more robust return periods; however, 
in all these advancements, the basic assumption were 
stationarity in the flood event/time series.

The assumption of stationarity has been challenged 
due to analytically-perceivable impacts of climate 
change, urbanisation and concomitant land use pattern 
(Gilroy and McCuen, 2012; Khaliq et al., 2006; 
Strupczewski et al., 2001; Strupczewski et al., 2009; 
Villarini et al., 2009; Villarini et al., 2010; Salas et al., 
2012). The response of hydrologic extremes to change 
in climate and land use is noticeable in recent decades 
with significant impact on water resources planning 
and management (Mango et al., 2012). Remarkably, 
Milly et al. (2008) stated that ‘stationary is dead’, and 
invalidated the assumption of stationarity in hydrologic 
modelling in changing climate. Therefore, a provision 
should be made to conduct nonstationary FFA along 
with stationary FFA, specifically where the influences 
of climate change and land use pattern are significant 
in changing the hydrological characteristics of a water 
resources system.

Although many researches emphasised on the 
inclusion of nonstationarity in FFA (Khaliq et al., 2006; 
Milly et al., 2008; Strupczewski et al., 2001, 2009), its 
application is questionable when the characteristics of 
flood variables are not significantly altered. In such case, 
the assumption of stationarity will suffice in accurate 
estimation of the flood return periods. Therefore, prior 
to performing FFA, some initiative approach, which 
explains the behaviour of the flood variables, must 
be conducted. To ascertain this, several researchers 
have performed trend analysis to assess the change 
in statistical moments of the extreme hydrologic time 
series (Cunderlik and Ouarda, 2009; Petrow and Merz, 

2009; Strupczewski et al., 2001). In hydrological 
modelling, different approaches of trend analysis 
have been adopted in the past studies; these include 
parametric and non-parametric trend analysis with 
their different circumstances and assumptions (Bates, 
2010; Cunderlik and Burn, 2003; Kahya and Kalayci, 
2004; Lacruz-Lorenzo et al., 2012; Petrow and Merz, 
2009; Tao et al., 2011; Vogel et al., 2011). Under these 
circumstances, researchers need detailed information 
and a comprehensive framework in initiating the 
nonstationary FFA. The present study is an attempt to 
prepare such a framework and also to collate detailed 
information regarding the comprehensive trend analysis, 
including parametric and nonparametric trend methods 
with their strengths and weaknesses to assess the 
presence of nonstationarity. 

Frequency analysis of nonstationary time series 
requires a different procedure than the conventional 
stationary approach because the probability density 
function changes with time (Villarini et al., 2009). 
The review of vast literature thus far (Figure 1) 
reveals different approaches implemented by the past 
researches in addressing nonstationary FFA, wherein 
the moments of statistical distribution are considered 
to be a function of time. Most of the past efforts on 
frequency analysis were considered either first-order 
(Vogel et al., 2011) or second-order nonstationarity 
(Cunderlik and Burn, 2003; Gilroy and McCuen, 
2012; Strupczewski et al., 2001). Vogel et al. (2011) 
conducted first-order nonstationary FFA for several 
gauging stations throughout USA considering location 
parameter of the lognormal distribution as a function 
of time. Further, they introduced a recurrence reduction 
(RR) factor using a quantile function of a probability 
distribution to consider the observed trend and its 
consequences during the estimation of RPs. Although 
first-order nonstationary analysis can capture the effect 
of nonstationarity in the estimation of flood quantile, 
a second-order nonstationary FFA is reportedly more 
accurate (Cunderlik and Burn, 2003; Gilroy and 
McCuen, 2012; Strupczewski et al., 2001; , Villarini et 
al., 2009; Villarini et al., 2010). In view of that, many 
researchers performed second-order nonstationary FFA 
(Cunderlik and Burn, 2003; Gilroy and McCuen, 2012; 
Strupczewski et al., 2009) and mentioned subsequent 
increase in the accuracy of the RP estimation. 

The aim of the present study is to emphasize the 
importance of initiative approaches in FFA by deriving a 
comprehensive framework. Such framework is required 
in FFA, to systematically perform all possible stationary 
and nonstationary frequency analyses. The proposed 
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framework was then applied to the daily streamflow 
series at gauging station 03193000 of the Kanawha 
River basin (West Virginia, USA) for the period of 
1879-2009. This gauging station dataset is well-accepted 
by the research community and was used by Grimaldi 
and Serinaldi (2006) for the period of 1877-2003 and 
Karmakar et al. (2012) for the period of 1879-2009 to 
conduct stationary FFA. However, both the studies did 
not validate the assumption of stationarity in the flood 
variables. Additionally, data for the period of 1972 – 
2011 of the Baltara gauging station of the Kosi River 
(Bihar, India), has been considered as the second case 
study, which presents a challenge in terms of long and 
recurring severe flood hazards. The Kosi River flows 
through semi-urban areas and may show nonstationarity 
due to the significant impact of urbanisation and climatic 
variability. 

Description of Stream Flow Datasets from the 
Two Study Areas

Kanawha River is a major river of the Kanawha 
County, West Virginia, which originates at the Town of 
Gauley Bridge in north-western Fayette County. Present 
study used streamflow data of the Kanawha Falls site 
(USGS gauging station: 03193000), which lies within 
Latitude 38°08′17″ N Longitude 81°12′52″ W, and has 
a drainage area of 8371 square miles. Kanawha River 
basin reportedly underwent rapid industrialisation with 
the development of coal and chemical companies in 
the past century (Hubacher and Wintz, 2003), which 
is likely to result in local climatic variability and 
consequent nonstationarity in the streamflow discharges. 
The past efforts made with the dataset of Kanawha Falls 
to demonstrate various approaches of FFA were with 
the assumption of stationarity (Grimaldi and Serinaldi, 
2006; Karmakar et al., 2012). Therefore, present study 
compares both the stationary and nonstationary models 
for FFA and identifies whether the above-mentioned 
factors caused substantial nonstationarity.

In addition to the Kanawha falls, the developed 
framework is applied to the Kosi River (Baltara gauging 
station) of Bihar. The Kosi River originates in the 
Himalaya and drains 29,400 km2 in China, 30,700 km2 
in Nepal and only 9,200 km2 in India (Arogyaswamy, 
1971). The Baltara gauging station lies in the southwest 
region of Bihar, India. Bihar is one of the developing 
states of India and has evidenced rapid urbanisation 
during the past few decades. These developments are 
likely to cause drastic local climate variability thereby 
introducing nonstationarity in the stream flow discharges 

(Thomas, 1993). The Kosi River is referred as ‘Curse of 
Bihar’ (Agarwal and Bhoj, 1992), because of its frequent 
flooding. Astonishingly, for this gauging station, FFA 
has not been reported earlier. Therefore, the results from 
the present study will provide useful information for 
the local communities. The daily unregulated discharge 
data from 1972-2011 (40 years) were procured from the 
Central Water Commission (CWC), Lower Ganga basin, 
Regional Office, Patna (Bihar), India. 

An Initiative Approach for Frequency Analysis

Initially, flood variables from the daily streamflow 
time series were delineated from the two most widely 
accepted methods, i.e., peak over threshold (POT), and 
annual maxima (AM) (Solari and Losada, 2012). Both 
these approaches have advantages and disadvantages. 
The AM approach can omit the largest peak in the year, 
which may be greater than many AM peak discharges of 
the other years, thus, causing fewer observations (Khaliq 
et al., 2006; Solari and Losada, 2012). On the other 
hand, the POT method requires minimum time interval 
between the occurrence of flood events, which exceeds 
the threshold to ensure the independence of the POT 
series and Poisson process of occurrences of extreme 
events (Ouarda et al., 2006; Solari and Losada, 2012).

Additionally, the selection of the optimum threshold 
value in the POT method plays a significant role in the 
delineation of flood variables, which is very subjective. 
Despite the importance of the threshold value in the 
POT method, most of the studies usually select a fixed 
quantile from 95 to 99.5 percentile corresponding to a 
low exceedance probability (Luceño et al., 2006; Smith, 
1987). Hence, to strengthen the POT method, some 
graphical and numerical methods have been developed 
by past researchers (Coles, 2001; Dupuis, 1999; Solari 
and Losada, 2012) for selecting the optimum threshold 
value. A graphical method, Mean Residual Life Plot 
(MRLP), is employed in the present study to choose the 
appropriate threshold value. MRLP is the locus of the 
points (Coles, 2001; Solari and Losada, 2012),
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where x(1)...x(nu) are the nu observations that exceed u, 
and xmax is the largest xi, is termed the mean residual 
life plot. For u > u0,u0 at which the generalised Pareto 
distribution provides a valid approximation to the 
excess distribution, the mean residual life plot should be 
approximately linear in u. Hereto, the flood variables P, 
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V, D and I can be extracted from the daily streamflow 
time series using optimum threshold as per the POT 
method. The reader may refer Karmakar and Simonovic 
(2008 and 2009), for further details about extraction of 
flood variables. The I is calculated as the ratio of volume 
to duration, which exhibits the shape of the peak events 
(Serinaldi and Kilsby, 2013).

Trend analysis can be performed by parametric as 
well as nonparametric approaches. Interestingly, both 
techniques have provided evidence of nonstationarity, 
but do not provide insight into the causal mechanisms. 
Given the ambiguity in selecting the parametric/ 
nonparametric trend analysis, the present study develops 

a conceptual framework (Figure 2), which includes 
both the approaches; and briefs the pros and cons of 
both the trend analysis. Few researches have argued 
in favour of the parametric trend test; however, some 
assumptions, like normality, constant pattern of variance 
and independency of dataset, are associated with these 
tests and tend to reduce its accuracy (Hamed, 2007; 
Hamed and Rao, 1998). Generally, hydro-climatological 
datasets do not satisfy the required assumptions for 
parametric trend test in the detection of trend (Huth and 
Pokorná, 2004; Kahya and Kalayci, 2004), hence the 
parametric trend test should be followed up by residual 
analysis to evaluate its performance (Montgomery et 

Figure 2: A proposed framework for comprehensive trend analysis required prior to FFA.
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al., 2011). On the other hand, the nonparametric trend 
test provides higher statistical power in the case of 
non-normality, outliers and missing data, though it 
does require independency of dataset (Gemmer et al., 
2011; Leclerc and Ouarda, 2007; Petrow and Merz, 
2009; Wang et al., 2012; Xu et al., 2010; Xu et al., 
2010). Therefore, it is always important to include non-
parametric analysis to estimate the accurate trend in the 
time series, with minimal or none assumptions. There 
are two widely used nonparametric trend analysis, i.e. 
Mann-Kendall and Spearman’s Rho tests. In the present 
study, both these tests are applied to have more assured 
results from the trend analysis. The next sections provide 
the brief discussion on the nonparametric trend tests.

Nonparametric Mann-Kendall Trend Test
Mann-Kendall (MK) is a robust nonparametric test, 
which was initially developed by Mann (1945) and 
subsequently Kendall (1975) derived the test statistics. 
Nonparametric Mann-Kendall test is widely accepted 
by the research community as an excellent tool for 
trend detection in hydrological variables (Birsan et al., 
2005; Douglas et al., 2000; Hamed, 2007; Wang et al., 
2012; Xu et al., 2010; Xu et al., 2010). However, the 
application of MK requires un-autocorrelated dataset 
in order to increase the strength of the test (Helsel and 
Hirsch, 1992; Xu et al., 2010; Xu et al., 2010). MK test 
may lead to overestimation/underestimation of the trend 
(Von-Storch and Navarra, 1995) or erroneous rejection 
of the null hypothesis, i.e., type I error (Yue et al., 2002) 
when dataset has statistically significant autocorrelation. 
The significant autocorrelation can be eliminated by a 
well-known pre-whitening technique (PWT) (Lacruz-
Lorenzo et al., 2012; Von-Storch and Navarra, 1995). 
While applying PWT it should be noted that the 
magnitude of the existing trend should be preserved in 
the time series. Sometimes, the original trend may be 
disturbed during the elimination of autocorrelation from 
time series. The readers can refer Lacruz-Lorenzo et al. 
(2012) for detailed methodological framework on the 
MK trend analysis for the highly autocorrelated data 
set. Further the trend of the time series is estimated by 
the non-parametric Sen slope estimator developed by 
Sen (1968).

Nonparametric Spearman’s Rho Trend Test
Spearman’s rho test is a rank-based nonparametric test, 
which can be used to detect the trend in time series 
(Diermanse et al., 2010; Xiong and Guo, 2004; Yue and 
Rasmussen, 2002). The Spearman’s rank correlations 
test is a quick and simple test to determine whether any 

significant correlation exists between two classifications 
of the series. In this test, a significant trend can only 
be found if the time steps and streamflow observations 
are significantly correlated (Kahya and Kalayci, 2004). 
The null hypothesis of the test states that no significant 
trend exists in time series while the alternative states 
vice versa. The detailed methodology can be obtained 
from Gupta and Kapoor (1970).

Apart from the nonparametric trend methods, 
the parametric linear regression technique has also 
been widely accepted by hydrologists worldwide 
(Cunderlik and Burn, 2003; Xu et al., 2010). Hence, 
the comprehensive trend analysis cannot be completed 
without implementation of parametric trend methods, 
which have been discussed in the next section.

Parametric Linear Regression
Linear regression is a parametric test that investigates 
the linear monotonic trend and is associated with some 
assumptions like normality, linearity and independence 
of dataset (Bates et al., 2010). Linear regression model 
is defined as:

	 Y	= (β × t) + α + εt	 (2)

where β and α are the estimated slope and intercept of 
the linear trend, respectively, and εt is the error term 
or residuals. Further, the statistical significance of the 
trend slope β can be examined using the Student’s t test, 
and if statistically significant slope has been observed, 
the residuals analysis is conducted to quantify the 
performance of the parametric trend test. During the 
residuals analysis the normal plot can be constructed to 
examine the assumption of normality and residuals can 
be fitted against predicted values to inspect the pattern 
of variance. Montgomery et al. (2010) may be referred 
for more details about residual analysis.

Stationary and Nonstationary FFA

Parametric-nonparametric Stationary Approach
In the past studies, parametric distributions have been 
commonly used as higher depicters of the flood variables 
in FFA. However, the selection of the appropriate 
parametric distribution that may be acceptable in all 
conditions is not clear so far, which is a crucial problem 
in the field of hydrology (Karim and Chowdhury, 
1995). Perhaps based on goodness-of-fit tests, certain 
distributions have often fitted well for the observed flood 
data despite the fact that each distribution tends to give 
different parametric estimates of the given quantile in 
the tail of the distribution (Karmakar and Simonovic, 
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2008). Nevertheless, in FFA, probability density 
functions (PDF) of flood variables are never known 
and must be assumed. Hence, nonparametric techniques 
have been introduced for better reproduction of the 
characteristics of the sample (Lall, 1995; Karmakar 
and Simonovic, 2008, 2009). Available literature on 
nonparametric FFA shows that kernel density estimates 
a flood variable more accurately and realistically. 
Hence, to avoid ambiguity between implementation of 
parametric and nonparametric distribution in the FFA, 
the present study incorporates a set of parametric (GEV, 
exponential, gamma, inverse Gaussian, lognormal, 
Weibull, extreme value) and nonparametric (Gaussian 
kernel, box kernel, triangular kernel, Epanechnikov 
kernel) distributions and further analysis will be carried 
out with the best fit distribution amongst them.

First-order Nonstationary Approach: Recurrence 
Reduction Factor Method
This technique is adopted from Vogel et al. (2011) 
and completely modified according to our conditions. 
Through this technique, a Recurrence reduction (RR) 
factor is developed that considers the observed trend and 
its consequences in the estimation of RPs. RR factor is 
calculated based on quantile function of two best fitted 
parametric GEV and lognormal distributions. Vogel et 
al. (2011) developed the RR factor only for lognormal 
distribution; however, the RR factor can be developed 
for other parametric distributions, as exemplified in 
this study. Note that during the estimation of the RR 
factor, first-order nonstationarity (considering only 
location parameter of the probability distribution as a 
function of time) was considered. Prior to applying the 
RR factor, the appropriate selection of distribution for 
a given dataset is also indispensable (Papalexiou and 
Koutsoyiannis, 2009). In the current study, six statistical 
techniques are performed over a set of selected 
parametric distributions and nonparametric kernel 
density estimators to obtain the best fit distribution 
for the AM peak discharge. For both the case studies, 
nonparametric Gaussian kernel estimator provided the 
best fit for AM peak discharge series while, in the 
case of parametric distributions, GEV and lognormal 
distributions are found to be best fit. However, Gaussian 
kernel distribution does not have a quantile function. 
Hence, RR factor is developed based on quantile 
function of GEV and lognormal distributions. Quantile 
function of GEV is given by Wilks (2011),

	 Yp	= µ
σ
ξ

ξ+ − −{ }−( log (p)) 1 	 (3)

where µ is the location parameter, σ is the scale 
parameter, ξ is the shape parameter and p is exceedance 
probability. The linear trend is found to be prominent 
from a comprehensive trend analysis and is given as

	 Xt	= α + (β × t) + εt	 (4)

where t is time (year) and β, α and εt are slopes, 
intercept and residuals of the linear model, respectively. 
The mean of AM flood series through GEV distribution 
is defined by,

Mean (Xt ) = 
µ σ

ξ
ξ

ξ ξ
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where γ is Euler’s constant and Γ is a gamma function. 
The shape parameter (ξ) value was 0.105 and 0.059 
for AM peak series of the Kanawha and Kosi rivers, 
respectively. Hence, the first case has been considered in 
Eq. (5). Combining the mean of xt = α + β × t and the 
ordinary least squares (OLS) estimate, the intercept term 
is given by  � � x t   Consequently, the location 
parameter of the GEV distribution has been obtained 
as function of time, using Eq. (5), 

μ (t) = x t t      





( ( )) ( )  




 1 1
	 (6)

where �  is an ordinary least square estimate of β, and 
n is the number of years of observations. Substitution 
of nonstationary location parameter from Eq. (6) to Eq. 
(3), leads to the following nonstationary model:

Yp (t) =  
  

(1 ) 1( )

log ( ) 1

x t t

p 

            
  


			  (7)

From Vogel et al. (2011), RR is defined as the average 
time between floods in some future year tf and some 
reference year t0 with an average recurrence interval of 
T0. If the average recurrence intervals of flood today 
and in some future year are T0 and Tf , with exceedance 
probabilities p0 = 1/T0 and pf = 1⁄Tf , respectively 
the average recurrence interval associated with the 
magnitude of the T0 year flood will be in some future 

year tf . Hence, RR is equal to the value of Tf , = 
1
p f

,

	 Yp
0
(t0)	= Yp

f
(tf) 	  (8)
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which requires the solution of the following expression 

for Tf  = 
1
p f

,

   
  

0

0

(1 ) 1

log( ) 1

x t t
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which leads to,

	pf = exp ( )
1/

0
ˆ log( )t p

− ξ
−ξ  ξ  − ×β × ∆ + −   σ   

	 (10)

where ∆ t = (tf – t0). Hence the RR factor is given as;

	 Tf 	= 
1
p f

	 (11)

Similarly, the recurrence reduction factor has also been 
calculated using the quantile function of two parameter 
lognormal (LN2) probability distributions. Final model 
of RR factor based on quantile function of lognormal 
probability distribution is given by

	 Tf 	= 
1

1−Φ( )Z pf
	 (12)

where the function φ is the cumulative density function 
of a standardised normal variable and represents the 
probability that a standardised normal variable is less 
than the value inside the parentheses. Also,

 Zpf 
	= 0

0
ˆ ( )1 log ˆ( )p

y f

x t tZ
x t t

 − β −
 +

σ −β −  
	 (13)

where Zp0
 and Zpf

 are the inverse of standard normal 
random variable with exceedance probability p0 and pf , 
respectively, and t0, tf and x are the current year, future 
year (current year + interested future time horizon) and 
mean of those years in which flood observation occurs, 
respectively. Additionally to increase the strength of the 
nonstationary analysis in the present study, second-order 
nonstationry analysis also has been considered, which 
is described in the next section.

Second-order Nonstationary Approach
A very well-known technique, “moving time window,” 
discussed by Kharin and Zwiers (2005) is performed 
to model the location and scale parameters of the best 
fitted parametric GEV distribution as a function of 
time. A 50-year moving time window was considered 
throughout the 131-year time series to estimate shape, 
scale and location parameter of GEV distribution 
using the method of maximum likelihood. The method 
of maximum likelihood is employed to estimate the 
distribution parameters as it provides more efficient 
estimation of distribution moments than the method of 
moments (Kendall and Stuart, 1973; Strupczewski et al., 
2001). It is noted that the performance of the moving 
time window method depends on three aspects—the 
length of the series, the length of the window and 
the time step (Cunderlik and Burn, 2003; Gilroy and 
McCuen, 2012). Hence, the second-order nonstationary 
analysis could not be performed over Baltara gauging 
station due to the unavailability of requisite dataset. 
We obtain 82 points values for each of the three GEV 
parameters. The location and scale parameters are 
regressed over the moving time window. Quadratic 
and exponential trend models are found to be more 
prominent for the location and scale parameter of 
GEV distribution with a maximum value of R2 (Figure 
3). The equation of fitted quadratic and exponential 
models for location and scale parameter, respectively, 
are given below:

	y = (0.0148 × x2) (2 × x) + 225	 (14)

y = 119.29 × e (–0.015 × x)	 (15)

Gilroy and McCuen (2012) also reported an exponential 
trend in the scale parameter in their study. Coles 
(2001) and Gilroy and McCuen (2012) suggested that 
modelling of shape parameter as a function of time/
explanatory variables may be unrealistic due to more 
sensitivity of higher moments (shape parameter). Hence, 
the shape parameter was held constant and the mean 
of 82 points was considered. Further, the trends of the 
location and scale parameters are extrapolated up to 
131 points and substituted in cumulative distribution 
function of GEV distribution to obtain the nonstationary 
CDF values for AM flood peak discharges. Finally, 
nonstationary RP was calculated for the corresponding 
AM peak discharges.
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Results and Discussion

From the mean residual life plot (Figure 4), the 95 
percentile (94.66 Mcum/d) and 92 percentiles (533.599 
Mcum/d) were found to be more appropriate threshold 
values for the POT method to extract the flood variables 
(P, V, D and I) for the Kanawha and Kosi River basins, 
respectively. Further, the same steps were followed for 
the comprehensive trend analysis, depicted in Figure 2.

Trend in Flood Variables
Parametric linear regression technique showed 
a significant negative trend in P and I while no 
statistically significant trend could be found in V 
and D delineated from the POT method, as shown in 
Table 1. However, the results from residual analysis 
depicted that parametric linear regression technique 
may not be a better choice. This is especially true in 

Figure 3: (a) Fitted quadratic trend model on GEV location parameter and (b) fitted exponential trend model on GEV 
scale parameter, over a 50-year moving time window for annual maximum peak at the Kanawha River.

Table 1: Test statistics of parametric linear regression test with trend slope for both  
the case studies

For the Kanawha River
Methods Flood variables Slope P-value Significant (Yes/No)
Peak over threshold Peak -0.043 2.21×10-6 Yes

Volume -0.047 0.0616 No
Duration 0.0004 0.1302 No
Avg. intensity -0.019 3.84 × 10-6 Yes

Annual mean of extreme events Peak -0.23 9.26 × 10-4 Yes
Volume -0.19 0.375 No
Duration 0.0038 0.123 No
Avg. intensity -0.14 4.48 × 10-4 Yes

Annual maxima Peak -1.11 1.41 × 10-7 Yes
For the Kosi River

Peak over threshold Peak -0.514 0.45 No
Volume -4.3 0.846 No
Duration 0.111 0.198 No
Avg. intensity -0.43 0.2124 No

Annual mean of extreme events Peak -11.67 0.0025 Yes
Volume -53.42 0.3728 No
Duration -0.13 0.5402 No
Avg. intensity -2.72 0.0169 Yes

Annual maxima Peak -7.00 0.008 Yes
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Figure 4: Mean residual life (MRL) plot for optimum threshold to delineate flood variables at (a) the 
Kanawha River basin and (b) the Kosi River basin. 95 percentile (94.6602 Mcum/d) and 92 percentile 
(533.59 Mcum/d) were found to be more appropriate threshold values to delineate flood variables for 

the Kanawha and Kosi River basins, respectively.

this case since the events series of flood variables did 
not satisfy the assumptions required for the parametric 
linear regression technique. On the other hand, results 
from nonparametric trend analysis revealed a negative 
trend in P and I with magnitude –0.014 and –0.01, 
respectively while no significant trend was found in V 
and D (Table 2). The flood variables extracted from the 
POT method are in the form of event series, not in time 

series; hence, due to the lack of the concept of time 
in flood variables extracted from POT, the parametric 
linear regression model did not perform well.

To overcome this limitation, the trend analysis was 
performed over the series extracted using annual mean 
of extreme events for all four flood variables. The 
parametric linear regression technique was performed 
over the series annual mean of extreme events (Figure 

Table 2: Trend results obtained from nonparametric tests for both the case studies

For the Kanawha River

Methods Flood variable
Mann-Kendall Sen’s slope estimator Spearman’s rho

Zstat Result Slope CI Result Zstat Result
Peak over threshold Peak -2.91 Yes -0.014 [-0.025,-0.003] Yes 2.92 Yes

Volume -1.44 No -0.01 [-0.028,0.003] No 1.46 No
Duration 1.11 No 0 [0,0.0002] No 1.37 No
Avg. intensity -3.31 Yes -0.01 [-0.01,-0.0006] Yes 3.33 Yes

Annual mean of extreme 
events

Peak -3.74 Yes -0.23 [-0.32,-0.15] Yes 3.92 Yes
Volume 1.93 No -0.33 [-0.54,-0.08] Yes 1.93 No
Duration 1.28 No 0.002 [0,0.004] No 1.28 No
Avg. intensity -3.62 Yes -0.14 [-0.20,-0.09] Yes 3.84 Yes

Annual maxima Peak -4.54 Yes -0.81 [-1.19,0.46] Yes 4.85 Yes
For the Kosi River

Peak over threshold Peak -0.34 No -0.89 [-0.56,0.31] No 0.39 No
Volume 0.456 No 0.47 [-1.20,2.93] No 0.45 No
Duration 1.37 No 0.045 [0,0.109] No 1.36 No
Avg. intensity -0.76 No -0.13 [-0.42,-0.11] No 0.70 No

Annual mean of extreme 
events

Peak -8.12 Yes -4.46 [-5.86,-3.72] Yes 2.57 Yes
Volume -2.17 Yes -17.73 [-40.52,-2.87] Yes 2.13 Yes
Duration -1.16 No -0.12 [-0.3,0] No 1.23 No
Avg. intensity -10.38 Yes -1.97 [-2.35,-1.72] Yes 3.04 Yes

Annual maxima Peak -2.66 Yes -6.49 [-9.26,-2.79] Yes 2.74 Yes
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5). Again, the results exhibited a significant trend only 
in P and I (Table 1). The residuals analysis revealed that 
parametric test satisfied the assumption of normality for 
P and I, however, the assumption of constant pattern of 
variables had been violated (Figure 6). The significant 
negative trend was found in P and I while no significant 
trend could be detected in V and D from nonparametric 
test (Table 2). The method of annual mean of extreme 
events may be trivial because it lies between the POT 
and AM methods. However, it is apparent from Figure 
6 that the residuals were found to be approximately 
normally distributed, which is the primary requirement 
of the parametric linear trend when considering the 
annual mean of extreme events.

In the case of AM peak discharge series, parametric 
and nonparametric tests showed a significant negative 
trend with slightly different magnitude of the slope 
calculated to be –1.11 and –0.81, respectively (Tables 
1 and 2). The residual analysis indicated that the 
parametric test may be feasible for AM peak series. 
Hence, sufficient evidence for the existence of 
nonstationarity was found in the AM peak series through 
the trend analysis, which indicated the necessity to 
perform nonstationary FFA. Similar observations are 
made in the Kosi River case study. Remarkably, most 
of the extreme events (delineated through POT) are 
observed in the monsoon period because rains from June 
to September (monsoon period) months bring surplus 
water into the Kosi River. Further, a trend analysis was 
performed over all the flood variables using parametric 
and nonparametric trend methods. The test statistics 
of parametric linear regression techniques showed no 
statistically significant trend in any of the four flood 
variables delineated by the POT method. Additionally, 
the results from nonparametric trend methods also 
indicated that the trend slope is not statistically different 
from zero for POT-delineated flood variables.

Further trend analysis is performed for the series 
of the annual mean of extreme events (as done for the 
Kanawha Fall at the Kanawha River in the previous 
section), and a significant negative trend is found in 
P and I from the parametric test. However, here again 
the residuals analysis did not support the parametric 
linear regression model. From the nonparametric trend 
method, a significant negative trend was found in P, V 
and I with slope magnitude –4.46, –17.73 and –1.97, 
respectively while D exhibited no trend in particular 
(Table 2). In the case of AM peak discharge series, 
parametric and nonparametric tests showed a significant 
downward trend with slightly different magnitude of 
the slope –7.00 and –6.49, respectively (Tables 1 and 

2). The residuals analysis confirmed the efficiency of 
the parametric test in detecting a trend in the AM peak 
series. Again, the trend analysis provided sufficient 
evidence for the presence of nonstationarity in AM 
peak at Baltara. Several studies have concluded that the 
magnitude of the slope based on Sen’s slope estimator 
is more robust than that estimated by parametric linear 
regression (Lacruz-Lorenzo et al., 2012). We observe 
sufficient evidences on the presence of significant trends 
in AM series for both the case studies implying the 
presence of nonstationarity. Therefore, the AM series 
is utilized further to conduct nonstationary analysis.

Comparison of Stationary and Nonstationary 
Approaches
Six statistical tests [Kolmogorov-Smirnov (KS), 
Anderson-Darling (AD), Chi-Square, Root mean square 
error (RMSE), Akaike information criterion (AIC) and 
Bayesian information criterion (BIC)] are conducted to 
evaluate the performance of the selected set of parametric 
and nonparametric distributions. Nonparametric 
Gaussian kernel estimator is obtained as best fit with 
minimum values of RMSE, AIC and BIC. While, among 
the parametric distribution, we obtained GEV and 
lognormal as best fit distributions for both case studies 
(Tables 3 and 4). As an extension to this, a comparison 
of different probability distribution functions (Figure 7) 
depicted that the histogram of AM peak discharge for 
both the case studies is more accurately reproduced by 
the Gaussian kernel estimator. Other three types of the 
kernel estimator have not been portrayed in Figure 7 
in the interest of greater clarity. Similar results were 
reported in Adamowski et al. (1998), who compared 
both parametric and nonparametric distributions for AM 
and partial duration (or POT) series, and considered 
only the peak as a flood variable. However, the results 
showed that the nonparametric kernel was more closely 
fitted to the observed peak than the parametric families 
of distribution, such as Gumbel, exponential, and GEV. 
Furthermore, these results indicated that the parametric 
distributions are sensitive to threshold level choice 
when applied to POT data. However, the nonparametric 
method was found to be less sensitive to the data type 
and the choice of threshold level.

The stationary RP was calculated with the best-
fitted Gaussian kernel distribution while the RR factor 
was computed based on the quantile function of the 
parametric GEV and lognormal distribution to calculate 
nonstationary RP. For the RR factor, the 15-year and 
10-year future time horizon was considered for the 
Kanawha and Kosi River basins, respectively. The 
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Figure 5: Parametric linear regression fitting on (a) peak discharge, (b) volume, (c) duration and (d) average intensity, 
delineated through annual mean of extreme events in the Kanawha River basin.

Figure 6: Normal probability fit on (a) residuals of peak discharge and (b) residuals of average intensity, delineated 
through annual mean of extreme events at the Kanawha River. The peak discharge and average intensity are satisfying 
the assumption of normality. Pattern of residuals against predicted values of (c) peak discharge and (d) average intensity. 
Figures (c) and (d) depict the diverge funnel, which indicates that the variance of peak discharge and average intensity 

are increasing with predicted values. 
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future time horizon was selected based on the change 
point analysis, which occurred at approximately 15 and 
10-year time intervals in the Kanawha and Kosi River 
basins, respectively. The results show a remarkable 
difference in the RPs estimated by the stationary and 
nonstationary approaches in FFA. Figures 8a and 8b 
depict the comparison between stationary RP based on 
the Gaussian kernel estimator and nonstationary RP 
based on GEV and lognormal distribution, respectively, 
at the Kanawha River basin. Interestingly, the results 
from Figures 8a and 8b (enlarged version of Figure 8 
in right-hand side) revealed insignificant difference in 
RP of smaller peak events while differences are found 
to get magnified for the extreme flood peak events at 
the Kanawha River. Additionally, the frequencies of 
extreme flood events decreased as per the nonstationary 
FFA because of the negative trend in streamflow. 

A comparison between nonstationary RPs based on 
GEV and lognormal distributions has been exhibited 
in Figure 8c. It is shown that nonstationary RPs do 
not show significant difference for smaller peak events 
while considerable difference are found for extreme 
flood events at the Kanawha River. This may be so 
because extreme events lie in the tail of the distribution 
and the shape of the tail may be different for both 
the distributions. The selection criteria of distribution 
depends on the tail of the distribution while rest of 
the parts of both PDFs are same, resulting in almost 
the same AIC and BIC values for both distributions. 
Hence, the events lying in the tail of the distribution 
exhibit the variation in the return period values for 
different distributions. In some cases, the steep line 
of return period is also observed, which may be due 

to fewer numbers of extreme events (or rare/outlier 
events), affecting the smoothness of the pattern of 
return period. Similar results are obtained for AM peak 
discharge series at the Kosi River, as shown in Figures 
9a, 9b and 9c.

The second-order nonstationary approach is 
performed only for the Kanawha River basin. Results 
from second-order nonstationary approach have been 
depicted in Figures 10a and 10b. The results exhibit 
a pattern similar to that obtained from RR factor-
based nonstationary FFA, but the magnitudes of RPs 
corresponding to the extreme events are found to be 
slightly altered. Figure 10b exhibits the comparison in 
the RPs calculated based on the first-order (based on RR 
factor for 15-year future time horizon) and second-order 
nonstationary FFA; significant differences are found in 
the RPs of the extreme peak events.

Conclusions

Nonstationarity in hydrologic time series due to 
climate change and/or anthropogenic activities at local 
or global scales cannot be ignored in contemporary 
hydrological studies. Although nonstationarity analysis 
will produce a more accurate estimation of the return 
period, the question remains as to whether it is always 
necessary to incorporate nonstationarity (which may be 
computationally difficult) even though the hydrologic 
variables are not heavily influenced by the impacts noted 
above. In such a case, the assumption of stationarity is 
still valid, and the analysis may provide an accurate 
estimation of the flood quantiles. Hence, to address 
this issue, the assessment of nonstationarity in the 

Figure 7: Comparison of different probability density functions for (a) AM peak discharge at the Kanawha Fall and 
(b) AM peak discharge at Baltara. The nonparametric Gaussian kernel estimator shows the best fit for both the case 

studies, followed by parametric GEV distribution.
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event series is a necessary initial step, which can be 
achieved by comprehensive trend analysis. Therefore, 
the present study provides a framework for such a 
comprehensive trend analysis, which is appropriately 
needed to systematically perform the FFA.

Through this study, two nonstationary methods (RR 
factor and second-order nonstationary approaches) 
are performed in the context to capture the effects of 
nonstationarity in the estimation of return periods versus 
stream flows in two case studies. The results from the 
present study have clearly pointed out that it is not only 
important to identify nonstationarity, but also necessary 
to consider it in frequency estimation in order to obtain 
more accurate quantile estimation. The major findings 
obtained during this study are listed below:

	1.	 A comprehensive trend analysis is performed to 
assess the presence of nonstationarity in flood 
variable series. Nonparametric trend methods are 
found to be more efficient in capturing the statistical 
trend as compared to parametric tests. Parametric 
trend method may lose their ability to capture the 
trend in time series due to their various assumptions. 

	2.	 A significant negative trend was evident in the AM 
peak discharge series at the Kanawha and Kosi 
rivers as per both the parametric and nonparametric 
trend tests. No significant trend could be detected in 
the POT-delineated series excluding the flood peak 
and average intensity series of the Kanawha River 
while all four flood variables showed no significant 
trend in the Kosi River basin. The residuals analysis 

Figure 8: Comparison of stationary return period from Gaussian kernel estimator with (a) nonstationary return 
period from GEV distribution and (b) nonstationary return period from lognormal distribution. Figure (c) shows the 
comparison between nonstationary return period from GEV and lognormal distribution for AM peak discharge series 

at the Kanawha Fall.
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underscored the unreliability of the parametric linear 
regression technique for the POT-delineated series 
on account of limitations related to parametric tests. 
Hence, it may be concluded that a trend analysis 
may not be completed without nonparametric trend 
methods and residuals analysis to quantify the 
accuracy of parametric test. The significant trends 
in the AM peak discharge indicate the presence of 
nonstationarity in the flood series.

Finally, the results underscored the significance 
of accounting the impact of nonstationarity during 
frequency estimation of extreme flood peak events. 
The results show significant differences in estimation 
of return periods considering stationarity and 

nonstationarity during frequency estimation of extreme 
flood peak events. Interestingly, the results obtained 
from stationary and nonstationary FFA showed almost 
the same return period for smaller peak events, whereas 
the difference got magnified for higher peak events. 
Also, the nonstationary FFA based on GEV and 
lognormal distribution showed significant variation 
in return period, which indicates that selection of 
distribution plays a major role in the estimation of 
return period. To improve the estimation of return 
period, second-order nonstationary approaches were 
implemented by using a 50-year moving window. 
Additionally, from a comparison of first- and second-
order nonstationary FFA, it can be concluded that higher 

Figure 9: Comparison of stationary return period from Gaussian kernel estimator with (a) nonstationary return 
period from GEV distribution and (b) nonstationary return period from a lognormal distribution. Figure (c) shows 
the comparison between nonstationary return period from GEV and lognormal distribution for AM peak discharge 

series at Baltara.
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Figure 10: Comparison between return period calculated from second-order nonstationary modelling with GEV 
distribution and (a) stationary return period with GEV distribution and (b) first-order nonstationary return period 

estimated based on RR factor (for the quantile function of GEV distribution) for 15-year future time.

order nonstationary analysis provides more accurate 
return periods estimation.

The findings of the present study indicate that 
inclusion of nonstationarity during FFA, may direct 
to accurate estimation of the RPs. However, it is 
not always necessary to conduct nonstationarity, if 
the change in climate and land use patterns are not 
significantly influencing the characteristics of the flood 
variables. In such cases, a provision must be given to 
stationary FFA. To identify these pros and cons, trend 
analysis must be conducted to identify stationarity/
nonstationarity in the event series. 
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