1) Check for updates

Journal of Climate Change, Vol. 1, No. 1-2 (2015), pp. 47-65.
DOI 10.3233/JCC-150004

A Framework for Investigating the Diagnostic Trend in
Stationary and Nonstationary Flood Frequency Analyses
Under Changing Climate

Jitendra Singh', H. Vittal', Tarkeshwar Singh?, Subhankar Karmakar!>4*
and Subimal Ghosh3*3

ICentre for Environmental Science and Engineering, Indian Institute of Technology Bombay (IIT-B)
Mumbai 400 076, India
2Applied Statistics and Informatics, II'T-B, Mumbai 400 076, India
3Interdisciplinary Programme in Climate Studies, I[IT-B, Mumbai 400 076, India
4Centre for Urban Science and Engineering, IIT-B, Mumbai 400 076, India
SDepartment of Civil Engineering, IIT-B, Mumbai 400 076, India
P4 skarmakar@iitb.ac.in

Received May 5, 2015; revised and accepted August 5, 2015

Abstract: The Nonstationary analysis drew formidable attention to the flood frequency analysis (FFA) research
community due to analytically perceivable impacts of climate change, urbanisation and concomitant land use
pattern on the flood event series. Albeit, the inclusion of nonstationarity in FFA significantly enhanced the accurate
estimation of the return period, however, its application is questionable when the flood variables (FV) are not
having persisting significant nonstationarity. In such cases, the assumption of stationarity is still valid and will
direct to accurate estimation of the flood quantiles. Hence, prior to conducting the comprehensive FFA, it is vital
to inspect the existence of stationarity/nonstationarity in the FV. This can be accomplished by a comprehensive
trend analysis. The aim of present study is to emphasize the importance of a comprehensive trend analysis during
FFA by proposing a framework to conduct the same. Further, the proposed framework has been demonstrated
on unregulated daily streamflow series of two gauging stations, at the Kanawha Fall of Kanawha River, West
Virginia, USA, and at the Baltara gauging station of Kosi River, Bihar, India.

The results show that the annual maxima (AM) delineated flood peak series has a significant trend in both the
gauging stations, providing sufficient evidence of nonstationarity, which is modelled by first- and second-order
nonstationary analyses. A comparison between first-order and second-order nonstationarity analyses has also
been performed, which suggests higher order nonstationary analysis might give more accurate information on the
occurrence of flood extremes. Overall, our study highlights that the proposed framework is an important initial
step before initiating FFA to avoid the ambiguity between the selection of stationary and nonstationary analysis.

Keywords: Climatic variability; Frequency analysis; Nonstationary; Nonparametric; Return period; Trend analysis;
Urbanisation.

Introduction and requires various mitigative measures; such as

o . . construction of adequate downstream flood defences,
Flooding is a 'destructlv.e ngtural hazard, WPICh can  efficient forecasting and proper land-use management
cause loss of lives and livelihoods at a massive scale (Kidson and Richards, 2005). All these mitigative
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measures require some information regarding hazard
component of flood risk through a comprehensive and
accurate flood frequency analysis (FFA). FFA defines
the severity of a flood event by summarising the flood
variables/characteristics, i.e., Peak (P), Volume (V),
Duration (D) and Average Intensity (/) and by estimating
their mutual dependence structure. It is often required
for planning (Stedinger and Griffis, 2008), designing
(Haddad and Rahman, 2012; Hirsch and Stedinger,
1987), operation of hydraulic structures (De-Michele
et al., 2005), and also to spatially map flood risk
combined with vulnerability and exposure for urban
or riverine flood management (Karmakar et al., 2010).
Recently, there are many studies (Choulakian et al.,
1990; Karmakar and Simonovic, 2008, 2009; Yue, 2001;
Yue and Rasmussen, 2002; Yue and Wang, 2004; Zhang
and Singh, 2006, 2007) indicating the advancements
in FFA to obtain more robust return periods; however,
in all these advancements, the basic assumption were
stationarity in the flood event/time series.

The assumption of stationarity has been challenged
due to analytically-perceivable impacts of climate
change, urbanisation and concomitant land use pattern
(Gilroy and McCuen, 2012; Khaliq et al., 2006;
Strupczewski et al., 2001; Strupczewski et al., 2009;
Villarini et al., 2009; Villarini et al., 2010; Salas et al.,
2012). The response of hydrologic extremes to change
in climate and land use is noticeable in recent decades
with significant impact on water resources planning
and management (Mango et al., 2012). Remarkably,
Milly et al. (2008) stated that ‘stationary is dead’, and
invalidated the assumption of stationarity in hydrologic
modelling in changing climate. Therefore, a provision
should be made to conduct nonstationary FFA along
with stationary FFA, specifically where the influences
of climate change and land use pattern are significant
in changing the hydrological characteristics of a water
resources system.

Although many researches emphasised on the
inclusion of nonstationarity in FFA (Khaliq et al., 2006;
Milly et al., 2008; Strupczewski et al., 2001, 2009), its
application is questionable when the characteristics of
flood variables are not significantly altered. In such case,
the assumption of stationarity will suffice in accurate
estimation of the flood return periods. Therefore, prior
to performing FFA, some initiative approach, which
explains the behaviour of the flood variables, must
be conducted. To ascertain this, several researchers
have performed trend analysis to assess the change
in statistical moments of the extreme hydrologic time
series (Cunderlik and Ouarda, 2009; Petrow and Merz,

2009; Strupczewski et al., 2001). In hydrological
modelling, different approaches of trend analysis
have been adopted in the past studies; these include
parametric and non-parametric trend analysis with
their different circumstances and assumptions (Bates,
2010; Cunderlik and Burn, 2003; Kahya and Kalayci,
2004; Lacruz-Lorenzo et al., 2012; Petrow and Merz,
2009; Tao et al., 2011; Vogel et al., 2011). Under these
circumstances, researchers need detailed information
and a comprehensive framework in initiating the
nonstationary FFA. The present study is an attempt to
prepare such a framework and also to collate detailed
information regarding the comprehensive trend analysis,
including parametric and nonparametric trend methods
with their strengths and weaknesses to assess the
presence of nonstationarity.

Frequency analysis of nonstationary time series
requires a different procedure than the conventional
stationary approach because the probability density
function changes with time (Villarini et al., 2009).
The review of vast literature thus far (Figure 1)
reveals different approaches implemented by the past
researches in addressing nonstationary FFA, wherein
the moments of statistical distribution are considered
to be a function of time. Most of the past efforts on
frequency analysis were considered either first-order
(Vogel et al., 2011) or second-order nonstationarity
(Cunderlik and Burn, 2003; Gilroy and McCuen,
2012; Strupczewski et al., 2001). Vogel et al. (2011)
conducted first-order nonstationary FFA for several
gauging stations throughout USA considering location
parameter of the lognormal distribution as a function
of time. Further, they introduced a recurrence reduction
(RR) factor using a quantile function of a probability
distribution to consider the observed trend and its
consequences during the estimation of RPs. Although
first-order nonstationary analysis can capture the effect
of nonstationarity in the estimation of flood quantile,
a second-order nonstationary FFA is reportedly more
accurate (Cunderlik and Burn, 2003; Gilroy and
McCuen, 2012; Strupczewski et al., 2001; , Villarini et
al., 2009; Villarini et al., 2010). In view of that, many
researchers performed second-order nonstationary FFA
(Cunderlik and Burn, 2003; Gilroy and McCuen, 2012;
Strupczewski et al., 2009) and mentioned subsequent
increase in the accuracy of the RP estimation.

The aim of the present study is to emphasize the
importance of initiative approaches in FFA by deriving a
comprehensive framework. Such framework is required
in FFA, to systematically perform all possible stationary
and nonstationary frequency analyses. The proposed
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framework was then applied to the daily streamflow
series at gauging station 03193000 of the Kanawha
River basin (West Virginia, USA) for the period of
1879-2009. This gauging station dataset is well-accepted
by the research community and was used by Grimaldi
and Serinaldi (2006) for the period of 1877-2003 and
Karmakar et al. (2012) for the period of 1879-2009 to
conduct stationary FFA. However, both the studies did
not validate the assumption of stationarity in the flood
variables. Additionally, data for the period of 1972 —
2011 of the Baltara gauging station of the Kosi River
(Bihar, India), has been considered as the second case
study, which presents a challenge in terms of long and
recurring severe flood hazards. The Kosi River flows
through semi-urban areas and may show nonstationarity
due to the significant impact of urbanisation and climatic
variability.

Description of Stream Flow Datasets from the
Two Study Areas

Kanawha River is a major river of the Kanawha
County, West Virginia, which originates at the Town of
Gauley Bridge in north-western Fayette County. Present
study used streamflow data of the Kanawha Falls site
(USGS gauging station: 03193000), which lies within
Latitude 38°08'17" N Longitude 81°12'52" W, and has
a drainage area of 8371 square miles. Kanawha River
basin reportedly underwent rapid industrialisation with
the development of coal and chemical companies in
the past century (Hubacher and Wintz, 2003), which
is likely to result in local climatic variability and
consequent nonstationarity in the streamflow discharges.
The past efforts made with the dataset of Kanawha Falls
to demonstrate various approaches of FFA were with
the assumption of stationarity (Grimaldi and Serinaldi,
2006; Karmakar et al., 2012). Therefore, present study
compares both the stationary and nonstationary models
for FFA and identifies whether the above-mentioned
factors caused substantial nonstationarity.

In addition to the Kanawha falls, the developed
framework is applied to the Kosi River (Baltara gauging
station) of Bihar. The Kosi River originates in the
Himalaya and drains 29,400 km? in China, 30,700 km?
in Nepal and only 9,200 km? in India (Arogyaswamy,
1971). The Baltara gauging station lies in the southwest
region of Bihar, India. Bihar is one of the developing
states of India and has evidenced rapid urbanisation
during the past few decades. These developments are
likely to cause drastic local climate variability thereby
introducing nonstationarity in the stream flow discharges

(Thomas, 1993). The Kosi River is referred as ‘Curse of
Bihar’ (Agarwal and Bhoj, 1992), because of its frequent
flooding. Astonishingly, for this gauging station, FFA
has not been reported earlier. Therefore, the results from
the present study will provide useful information for
the local communities. The daily unregulated discharge
data from 1972-2011 (40 years) were procured from the
Central Water Commission (CWC), Lower Ganga basin,
Regional Office, Patna (Bihar), India.

An Initiative Approach for Frequency Analysis

Initially, flood variables from the daily streamflow
time series were delineated from the two most widely
accepted methods, i.e., peak over threshold (POT), and
annual maxima (AM) (Solari and Losada, 2012). Both
these approaches have advantages and disadvantages.
The AM approach can omit the largest peak in the year,
which may be greater than many AM peak discharges of
the other years, thus, causing fewer observations (Khaliq
et al., 2006; Solari and Losada, 2012). On the other
hand, the POT method requires minimum time interval
between the occurrence of flood events, which exceeds
the threshold to ensure the independence of the POT
series and Poisson process of occurrences of extreme
events (Ouarda et al., 2006; Solari and Losada, 2012).

Additionally, the selection of the optimum threshold
value in the POT method plays a significant role in the
delineation of flood variables, which is very subjective.
Despite the importance of the threshold value in the
POT method, most of the studies usually select a fixed
quantile from 95 to 99.5 percentile corresponding to a
low exceedance probability (Luceio et al., 2006; Smith,
1987). Hence, to strengthen the POT method, some
graphical and numerical methods have been developed
by past researchers (Coles, 2001; Dupuis, 1999; Solari
and Losada, 2012) for selecting the optimum threshold
value. A graphical method, Mean Residual Life Plot
(MRLP), is employed in the present study to choose the
appropriate threshold value. MRLP is the locus of the
points (Coles, 2001; Solari and Losada, 2012),

| « .
{[u,ag(x(i))—u}u<xmax} (D

where X(gye Xy, ) ATC the n,, observations that exceed u,
and x__ 1s the largest x, is termed the mean residual
life plot. For u > u,u, at which the generalised Pareto
distribution provides a valid approximation to the
excess distribution, the mean residual life plot should be
approximately linear in u. Hereto, the flood variables P,
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V, D and I can be extracted from the daily streamflow
time series using optimum threshold as per the POT
method. The reader may refer Karmakar and Simonovic
(2008 and 2009), for further details about extraction of
flood variables. The [/ is calculated as the ratio of volume
to duration, which exhibits the shape of the peak events
(Serinaldi and Kilsby, 2013).

Trend analysis can be performed by parametric as
well as nonparametric approaches. Interestingly, both
techniques have provided evidence of nonstationarity,
but do not provide insight into the causal mechanisms.
Given the ambiguity in selecting the parametric/
nonparametric trend analysis, the present study develops

a conceptual framework (Figure 2), which includes
both the approaches; and briefs the pros and cons of
both the trend analysis. Few researches have argued
in favour of the parametric trend test; however, some
assumptions, like normality, constant pattern of variance
and independency of dataset, are associated with these
tests and tend to reduce its accuracy (Hamed, 2007;
Hamed and Rao, 1998). Generally, hydro-climatological
datasets do not satisfy the required assumptions for
parametric trend test in the detection of trend (Huth and
Pokorna, 2004; Kahya and Kalayci, 2004), hence the
parametric trend test should be followed up by residual
analysis to evaluate its performance (Montgomery et

Data treatment

l— Delineation of extreme events

Annual maxima (AM}

(e

Check for
autocorrelation

Peak over threshold (POT}

55>

Apply Pre-whitening technique
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Linear regression

v

Residual analysis

s linear
regresslon

—>| Trend analysis |€
v v
Parametric trend test Nonparametric trend test
) v v

Mann-Kendall with

, Spearman’s rho
Sen’s slope estimator

Is there any
statistically
significant trend?

<I'E'Tef>

Parametrlc Linear No evidence for Sufﬁcient evidence
regression does not work] nonstationary for nonstationary

Figure 2: A proposed framework for comprehensive trend analysis required prior to FFA.
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al., 2011). On the other hand, the nonparametric trend
test provides higher statistical power in the case of
non-normality, outliers and missing data, though it
does require independency of dataset (Gemmer et al.,
2011; Leclerc and Ouarda, 2007; Petrow and Merz,
2009; Wang et al., 2012; Xu et al., 2010; Xu et al.,
2010). Therefore, it is always important to include non-
parametric analysis to estimate the accurate trend in the
time series, with minimal or none assumptions. There
are two widely used nonparametric trend analysis, i.e.
Mann-Kendall and Spearman’s Rho tests. In the present
study, both these tests are applied to have more assured
results from the trend analysis. The next sections provide
the brief discussion on the nonparametric trend tests.

Nonparametric Mann-Kendall Trend Test
Mann-Kendall (MK) is a robust nonparametric test,
which was initially developed by Mann (1945) and
subsequently Kendall (1975) derived the test statistics.
Nonparametric Mann-Kendall test is widely accepted
by the research community as an excellent tool for
trend detection in hydrological variables (Birsan et al.,
2005; Douglas et al., 2000; Hamed, 2007; Wang et al.,
2012; Xu et al., 2010; Xu et al., 2010). However, the
application of MK requires un-autocorrelated dataset
in order to increase the strength of the test (Helsel and
Hirsch, 1992; Xu et al., 2010; Xu et al., 2010). MK test
may lead to overestimation/underestimation of the trend
(Von-Storch and Navarra, 1995) or erroneous rejection
of the null hypothesis, i.e., type I error (Yue et al., 2002)
when dataset has statistically significant autocorrelation.
The significant autocorrelation can be eliminated by a
well-known pre-whitening technique (PWT) (Lacruz-
Lorenzo et al., 2012; Von-Storch and Navarra, 1995).
While applying PWT it should be noted that the
magnitude of the existing trend should be preserved in
the time series. Sometimes, the original trend may be
disturbed during the elimination of autocorrelation from
time series. The readers can refer Lacruz-Lorenzo et al.
(2012) for detailed methodological framework on the
MK trend analysis for the highly autocorrelated data
set. Further the trend of the time series is estimated by
the non-parametric Sen slope estimator developed by
Sen (1968).

Nonparametric Spearman’s Rho Trend Test

Spearman’s rho test is a rank-based nonparametric test,
which can be used to detect the trend in time series
(Diermanse et al., 2010; Xiong and Guo, 2004; Yue and
Rasmussen, 2002). The Spearman’s rank correlations
test is a quick and simple test to determine whether any

significant correlation exists between two classifications
of the series. In this test, a significant trend can only
be found if the time steps and streamflow observations
are significantly correlated (Kahya and Kalayci, 2004).
The null hypothesis of the test states that no significant
trend exists in time series while the alternative states
vice versa. The detailed methodology can be obtained
from Gupta and Kapoor (1970).

Apart from the nonparametric trend methods,
the parametric linear regression technique has also
been widely accepted by hydrologists worldwide
(Cunderlik and Burn, 2003; Xu et al., 2010). Hence,
the comprehensive trend analysis cannot be completed
without implementation of parametric trend methods,
which have been discussed in the next section.

Parametric Linear Regression

Linear regression is a parametric test that investigates
the linear monotonic trend and is associated with some
assumptions like normality, linearity and independence
of dataset (Bates et al., 2010). Linear regression model
is defined as:

Y=(xn+ate, 2)

where  and a are the estimated slope and intercept of
the linear trend, respectively, and ¢, is the error term
or residuals. Further, the statistical significance of the
trend slope 3 can be examined using the Student’s ¢ test,
and if statistically significant slope has been observed,
the residuals analysis is conducted to quantify the
performance of the parametric trend test. During the
residuals analysis the normal plot can be constructed to
examine the assumption of normality and residuals can
be fitted against predicted values to inspect the pattern
of variance. Montgomery et al. (2010) may be referred
for more details about residual analysis.

Stationary and Nonstationary FFA

Parametric-nonparametric Stationary Approach

In the past studies, parametric distributions have been
commonly used as higher depicters of the flood variables
in FFA. However, the selection of the appropriate
parametric distribution that may be acceptable in all
conditions is not clear so far, which is a crucial problem
in the field of hydrology (Karim and Chowdhury,
1995). Perhaps based on goodness-of-fit tests, certain
distributions have often fitted well for the observed flood
data despite the fact that each distribution tends to give
different parametric estimates of the given quantile in
the tail of the distribution (Karmakar and Simonovic,
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2008). Nevertheless, in FFA, probability density
functions (PDF) of flood variables are never known
and must be assumed. Hence, nonparametric techniques
have been introduced for better reproduction of the
characteristics of the sample (Lall, 1995; Karmakar
and Simonovic, 2008, 2009). Available literature on
nonparametric FFA shows that kernel density estimates
a flood variable more accurately and realistically.
Hence, to avoid ambiguity between implementation of
parametric and nonparametric distribution in the FFA,
the present study incorporates a set of parametric (GEV,
exponential, gamma, inverse Gaussian, lognormal,
Weibull, extreme value) and nonparametric (Gaussian
kernel, box kernel, triangular kernel, Epanechnikov
kernel) distributions and further analysis will be carried
out with the best fit distribution amongst them.

First-order Nonstationary Approach: Recurrence
Reduction Factor Method

This technique is adopted from Vogel et al. (2011)
and completely modified according to our conditions.
Through this technique, a Recurrence reduction (RR)
factor is developed that considers the observed trend and
its consequences in the estimation of RPs. RR factor is
calculated based on quantile function of two best fitted
parametric GEV and lognormal distributions. Vogel et
al. (2011) developed the RR factor only for lognormal
distribution; however, the RR factor can be developed
for other parametric distributions, as exemplified in
this study. Note that during the estimation of the RR
factor, first-order nonstationarity (considering only
location parameter of the probability distribution as a
function of time) was considered. Prior to applying the
RR factor, the appropriate selection of distribution for
a given dataset is also indispensable (Papalexiou and
Koutsoyiannis, 2009). In the current study, six statistical
techniques are performed over a set of selected
parametric distributions and nonparametric kernel
density estimators to obtain the best fit distribution
for the AM peak discharge. For both the case studies,
nonparametric Gaussian kernel estimator provided the
best fit for AM peak discharge series while, in the
case of parametric distributions, GEV and lognormal
distributions are found to be best fit. However, Gaussian
kernel distribution does not have a quantile function.
Hence, RR factor is developed based on quantile
function of GEV and lognormal distributions. Quantile
function of GEV is given by Wilks (2011),

A (GO EE)

where p is the location parameter, ¢ is the scale
parameter, & is the shape parameter and p is exceedance
probability. The linear trend is found to be prominent
from a comprehensive trend analysis and is given as

X=a+ (P x0+e, 4

where ¢ is time (year) and B, a and ¢, are slopes,
intercept and residuals of the linear model, respectively.
The mean of AM flood series through GEV distribution
is defined by,

u+o (F(l ;’) 1] if €0, E<1

p+(©xy) if £€=0
0 if £>1

Mean (X)) = (5)

where vy is Euler’s constant and I is a gamma function.
The shape parameter (&) value was 0.105 and 0.059
for AM peak series of the Kanawha and Kosi rivers,
respectively. Hence, the first case has been considered in
Eq. (5). Combining the mean of x, = o + X ¢ and the
ordinary least squares (OLS) estimate, the intercept term
is given by g =x — |§ x ¢ Consequently, the location
parameter of the GEV distribution has been obtained
as function of time, using Eq. (5),
ra-¢g) -1
j (6)

§

where ] is an ordinary least square estimate of 3, and
n is the number of years of observations. Substitution
of nonstationary location parameter from Eq. (6) to Eq.
(3), leads to the following nonstationary model:

v, 0=+ (Br-D)- ( Ta é&) 1)

+%{(—log () -1} (1)

From Vogel et al. (2011), RR is defined as the average
time between floods in some future year l and some
reference year ¢, with an average recurrence interval of
T,. If the average recurrence intervals of flood today
and in some future year are 7}, and T with exceedance
probabilities p, = 1/7,, and pr= l/Tf, respectively
the average recurrence interval associated with the
magnitude of the 7|, year flood will be in some future

1
year f. Hence, RR is equal to the value of T, = —,

Py
Y, (t) = ( /) (8)
0

u(t):)_c+([§><(t—?))—£6><
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which requires the solution of the following expression

1
for T, = —,
/ Py

f+(f3><(t0 —7))—(me_T§)_1)+

_ (A [ ora-g-1)
=x+([3><(tf—t))—kcx%J+

)
S

which leads to,

1/e
;= exp {—{[% x B x At) + (—log(po))&} ] (10)

where At = (t,— 1,). Hence the RR factor is given as;

(~toe(p) -1 ©)

T, =— (11)

Similarly, the recurrence reduction factor has also been
calculated using the quantile function of two parameter
lognormal (LN2) probability distributions. Final model
of RR factor based on quantile function of lognormal
probability distribution is given by

1
I,=——7— (12)
S1-0(Z,)
where the function ¢ is the cumulative density function
of a standardised normal variable and represents the
probability that a standardised normal variable is less
than the value inside the parentheses. Also,

1 TPy -1)
= Z _1 -~
pr » 5 Og[f—ﬁ(tf _7)] (13)

where Zpo and Z are the inverse of standard normal
random variable with exceedance probability p, and p s
respectively, and 7, 4 and X are the current year, future
year (current year + interested future time horizon) and
mean of those years in which flood observation occurs,
respectively. Additionally to increase the strength of the
nonstationary analysis in the present study, second-order
nonstationry analysis also has been considered, which
is described in the next section.

Second-order Nonstationary Approach

A very well-known technique, “moving time window,”
discussed by Kharin and Zwiers (2005) is performed
to model the location and scale parameters of the best
fitted parametric GEV distribution as a function of
time. A 50-year moving time window was considered
throughout the 131-year time series to estimate shape,
scale and location parameter of GEV distribution
using the method of maximum likelihood. The method
of maximum likelihood is employed to estimate the
distribution parameters as it provides more efficient
estimation of distribution moments than the method of
moments (Kendall and Stuart, 1973; Strupczewski et al.,
2001). It is noted that the performance of the moving
time window method depends on three aspects—the
length of the series, the length of the window and
the time step (Cunderlik and Burn, 2003; Gilroy and
McCuen, 2012). Hence, the second-order nonstationary
analysis could not be performed over Baltara gauging
station due to the unavailability of requisite dataset.
We obtain 82 points values for each of the three GEV
parameters. The location and scale parameters are
regressed over the moving time window. Quadratic
and exponential trend models are found to be more
prominent for the location and scale parameter of
GEV distribution with a maximum value of R? (Figure
3). The equation of fitted quadratic and exponential
models for location and scale parameter, respectively,
are given below:

¥y =(0.0148 x x?) (2 x x) + 225 (14)

y=119.29 x 00155 (15)

Gilroy and McCuen (2012) also reported an exponential
trend in the scale parameter in their study. Coles
(2001) and Gilroy and McCuen (2012) suggested that
modelling of shape parameter as a function of time/
explanatory variables may be unrealistic due to more
sensitivity of higher moments (shape parameter). Hence,
the shape parameter was held constant and the mean
of 82 points was considered. Further, the trends of the
location and scale parameters are extrapolated up to
131 points and substituted in cumulative distribution
function of GEV distribution to obtain the nonstationary
CDF values for AM flood peak discharges. Finally,
nonstationary RP was calculated for the corresponding
AM peak discharges.
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Figure 3: (a) Fitted quadratic trend model on GEV location parameter and (b) fitted exponential trend model on GEV
scale parameter, over a 50-year moving time window for annual maximum peak at the Kanawha River.

Results and Discussion

From the mean residual life plot (Figure 4), the 95
percentile (94.66 Mcum/d) and 92 percentiles (533.599
Mcum/d) were found to be more appropriate threshold
values for the POT method to extract the flood variables
(P, V, D and ]) for the Kanawha and Kosi River basins,
respectively. Further, the same steps were followed for
the comprehensive trend analysis, depicted in Figure 2.

Trend in Flood Variables

Parametric linear regression technique showed
a significant negative trend in P and / while no
statistically significant trend could be found in V
and D delineated from the POT method, as shown in
Table 1. However, the results from residual analysis
depicted that parametric linear regression technique
may not be a better choice. This is especially true in

Table 1: Test statistics of parametric linear regression test with trend slope for both

the case studies

For the Kanawha River

Methods Flood variables Slope P-value Significant (Yes/No)
Peak over threshold Peak -0.043 2.21x10° Yes
Volume -0.047 0.0616 No
Duration 0.0004 0.1302 No
Avg. intensity -0.019 3.84 x 1076 Yes
Annual mean of extreme events  Peak -0.23 9.26 x 10 Yes
Volume -0.19 0.375 No
Duration 0.0038 0.123 No
Avg. intensity -0.14 4.48 x 10 Yes
Annual maxima Peak -1.11 1.41 x 107 Yes
For the Kosi River
Peak over threshold Peak -0.514 0.45 No
Volume -4.3 0.846 No
Duration 0.111 0.198 No
Avg. intensity -0.43 0.2124 No
Annual mean of extreme events  Peak -11.67 0.0025 Yes
Volume -53.42 0.3728 No
Duration -0.13 0.5402 No
Avg. intensity -2.72 0.0169 Yes
Annual maxima Peak -7.00 0.008 Yes
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Table 2: Trend results obtained from nonparametric tests for both the case studies

Jitendra Singh et al.

For the Kanawha River

Mann-Kendall

Sen's slope estimator

Spearman'’s rho

Methods Flood variable
Z Result Slope CI Result Z Result
Peak over threshold Peak -2.91 Yes -0.014 [-0.025,-0.003] Yes 2.92 Yes
Volume -1.44 No -0.01 [-0.028,0.003] No 1.46 No
Duration 1.11 No 0 [0,0.0002] No 1.37 No
Avg. intensity -3.31 Yes -0.01 [-0.01,-0.0006] Yes 333 Yes
Annual mean of extreme Peak -3.74 Yes -0.23 [-0.32,-0.15] Yes 3.92 Yes
events Volume 1.93 No -0.33 [-0.54,-0.08] Yes 1.93 No
Duration 1.28 No 0.002 [0,0.004] No 1.28 No
Avg. intensity -3.62 Yes -0.14 [-0.20,-0.09] Yes 3.84 Yes
Annual maxima Peak -4.54 Yes -0.81 [-1.19,0.46] Yes 4.85 Yes
For the Kosi River
Peak over threshold Peak -0.34 No -0.89 [-0.56,0.31] No 0.39 No
Volume 0.456 No 0.47 [-1.20,2.93] No 0.45 No
Duration 1.37 No 0.045 [0,0.109] No 1.36 No
Avg. intensity -0.76 No -0.13 [-0.42,-0.11] No 0.70 No
Annual mean of extreme Peak -8.12 Yes -4.46 [-5.86,-3.72] Yes 2.57 Yes
events Volume -2.17 Yes -17.73 [-40.52,-2.87] Yes 2.13 Yes
Duration -1.16 No -0.12 [-0.3,0] No 1.23 No
Avg. intensity -10.38 Yes -1.97 [-2.35,-1.72] Yes 3.04 Yes
Annual maxima Peak -2.66 Yes -6.49 [-9.26,-2.79] Yes 2.74 Yes
70r 180¢
= (a) 3
£ R?=0.64 ° E
F 3 140¢
-3 =
g 2
= = 100F
100 120 140 160 180 200 500 600 700 800 900
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Figure 4: Mean residual life (MRL) plot for optimum threshold to delineate flood variables at (a) the

Kanawha River basin and (b) the Kosi River basin. 95 percentile (94.6602 Mcum/d) and 92 percentile

(533.59 Mcum/d) were found to be more appropriate threshold values to delineate flood variables for
the Kanawha and Kosi River basins, respectively.

this case since the events series of flood variables did
not satisfy the assumptions required for the parametric
linear regression technique. On the other hand, results
from nonparametric trend analysis revealed a negative
trend in P and / with magnitude —0.014 and —0.01,
respectively while no significant trend was found in
and D (Table 2). The flood variables extracted from the
POT method are in the form of event series, not in time

series; hence, due to the lack of the concept of time
in flood variables extracted from POT, the parametric
linear regression model did not perform well.

To overcome this limitation, the trend analysis was
performed over the series extracted using annual mean
of extreme events for all four flood variables. The
parametric linear regression technique was performed
over the series annual mean of extreme events (Figure
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5). Again, the results exhibited a significant trend only
in P and / (Table 1). The residuals analysis revealed that
parametric test satisfied the assumption of normality for
P and I, however, the assumption of constant pattern of
variables had been violated (Figure 6). The significant
negative trend was found in P and / while no significant
trend could be detected in " and D from nonparametric
test (Table 2). The method of annual mean of extreme
events may be trivial because it lies between the POT
and AM methods. However, it is apparent from Figure
6 that the residuals were found to be approximately
normally distributed, which is the primary requirement
of the parametric linear trend when considering the
annual mean of extreme events.

In the case of AM peak discharge series, parametric
and nonparametric tests showed a significant negative
trend with slightly different magnitude of the slope
calculated to be —1.11 and —0.81, respectively (Tables
1 and 2). The residual analysis indicated that the
parametric test may be feasible for AM peak series.
Hence, sufficient evidence for the existence of
nonstationarity was found in the AM peak series through
the trend analysis, which indicated the necessity to
perform nonstationary FFA. Similar observations are
made in the Kosi River case study. Remarkably, most
of the extreme events (delineated through POT) are
observed in the monsoon period because rains from June
to September (monsoon period) months bring surplus
water into the Kosi River. Further, a trend analysis was
performed over all the flood variables using parametric
and nonparametric trend methods. The test statistics
of parametric linear regression techniques showed no
statistically significant trend in any of the four flood
variables delineated by the POT method. Additionally,
the results from nonparametric trend methods also
indicated that the trend slope is not statistically different
from zero for POT-delineated flood variables.

Further trend analysis is performed for the series
of the annual mean of extreme events (as done for the
Kanawha Fall at the Kanawha River in the previous
section), and a significant negative trend is found in
P and [ from the parametric test. However, here again
the residuals analysis did not support the parametric
linear regression model. From the nonparametric trend
method, a significant negative trend was found in P, V'
and / with slope magnitude —4.46, —17.73 and —1.97,
respectively while D exhibited no trend in particular
(Table 2). In the case of AM peak discharge series,
parametric and nonparametric tests showed a significant
downward trend with slightly different magnitude of
the slope —7.00 and —6.49, respectively (Tables 1 and

2). The residuals analysis confirmed the efficiency of
the parametric test in detecting a trend in the AM peak
series. Again, the trend analysis provided sufficient
evidence for the presence of nonstationarity in AM
peak at Baltara. Several studies have concluded that the
magnitude of the slope based on Sen’s slope estimator
is more robust than that estimated by parametric linear
regression (Lacruz-Lorenzo et al., 2012). We observe
sufficient evidences on the presence of significant trends
in AM series for both the case studies implying the
presence of nonstationarity. Therefore, the AM series
is utilized further to conduct nonstationary analysis.

Comparison of Stationary and Nonstationary
Approaches

Six statistical tests [Kolmogorov-Smirnov (KS),
Anderson-Darling (AD), Chi-Square, Root mean square
error (RMSE), Akaike information criterion (AIC) and
Bayesian information criterion (BIC)] are conducted to
evaluate the performance of the selected set of parametric
and nonparametric distributions. Nonparametric
Gaussian kernel estimator is obtained as best fit with
minimum values of RMSE, AIC and BIC. While, among
the parametric distribution, we obtained GEV and
lognormal as best fit distributions for both case studies
(Tables 3 and 4). As an extension to this, a comparison
of different probability distribution functions (Figure 7)
depicted that the histogram of AM peak discharge for
both the case studies is more accurately reproduced by
the Gaussian kernel estimator. Other three types of the
kernel estimator have not been portrayed in Figure 7
in the interest of greater clarity. Similar results were
reported in Adamowski et al. (1998), who compared
both parametric and nonparametric distributions for AM
and partial duration (or POT) series, and considered
only the peak as a flood variable. However, the results
showed that the nonparametric kernel was more closely
fitted to the observed peak than the parametric families
of distribution, such as Gumbel, exponential, and GEV.
Furthermore, these results indicated that the parametric
distributions are sensitive to threshold level choice
when applied to POT data. However, the nonparametric
method was found to be less sensitive to the data type
and the choice of threshold level.

The stationary RP was calculated with the best-
fitted Gaussian kernel distribution while the RR factor
was computed based on the quantile function of the
parametric GEV and lognormal distribution to calculate
nonstationary RP. For the RR factor, the 15-year and
10-year future time horizon was considered for the
Kanawha and Kosi River basins, respectively. The
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Figure 5: Parametric linear regression fitting on (a) peak discharge, (b) volume, (¢) duration and (d) average intensity,
delineated through annual mean of extreme events in the Kanawha River basin.
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future time horizon was selected based on the change
point analysis, which occurred at approximately 15 and
10-year time intervals in the Kanawha and Kosi River
basins, respectively. The results show a remarkable
difference in the RPs estimated by the stationary and
nonstationary approaches in FFA. Figures 8a and 8b
depict the comparison between stationary RP based on
the Gaussian kernel estimator and nonstationary RP
based on GEV and lognormal distribution, respectively,
at the Kanawha River basin. Interestingly, the results
from Figures 8a and 8b (enlarged version of Figure 8
in right-hand side) revealed insignificant difference in
RP of smaller peak events while differences are found
to get magnified for the extreme flood peak events at
the Kanawha River. Additionally, the frequencies of
extreme flood events decreased as per the nonstationary
FFA because of the negative trend in streamflow.

A comparison between nonstationary RPs based on
GEV and lognormal distributions has been exhibited
in Figure 8c. It is shown that nonstationary RPs do
not show significant difference for smaller peak events
while considerable difference are found for extreme
flood events at the Kanawha River. This may be so
because extreme events lie in the tail of the distribution
and the shape of the tail may be different for both
the distributions. The selection criteria of distribution
depends on the tail of the distribution while rest of
the parts of both PDFs are same, resulting in almost
the same AIC and BIC values for both distributions.
Hence, the events lying in the tail of the distribution
exhibit the variation in the return period values for
different distributions. In some cases, the steep line
of return period is also observed, which may be due

i ‘ |
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(a) —e—Gaussian kernel
6 —+Lognormal
> i —+—Weibull
-~ [ —~—GEV
=4 ——Extreme value
[«}] 4 ——Gamma
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to fewer numbers of extreme events (or rare/outlier
events), affecting the smoothness of the pattern of
return period. Similar results are obtained for AM peak
discharge series at the Kosi River, as shown in Figures
9a, 9b and 9c.

The second-order nonstationary approach is
performed only for the Kanawha River basin. Results
from second-order nonstationary approach have been
depicted in Figures 10a and 10b. The results exhibit
a pattern similar to that obtained from RR factor-
based nonstationary FFA, but the magnitudes of RPs
corresponding to the extreme events are found to be
slightly altered. Figure 10b exhibits the comparison in
the RPs calculated based on the first-order (based on RR
factor for 15-year future time horizon) and second-order
nonstationary FFA; significant differences are found in
the RPs of the extreme peak events.

Conclusions

Nonstationarity in hydrologic time series due to
climate change and/or anthropogenic activities at local
or global scales cannot be ignored in contemporary
hydrological studies. Although nonstationarity analysis
will produce a more accurate estimation of the return
period, the question remains as to whether it is always
necessary to incorporate nonstationarity (which may be
computationally difficult) even though the hydrologic
variables are not heavily influenced by the impacts noted
above. In such a case, the assumption of stationarity is
still valid, and the analysis may provide an accurate
estimation of the flood quantiles. Hence, to address
this issue, the assessment of nonstationarity in the
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Figure 7: Comparison of different probability density functions for (a) AM peak discharge at the Kanawha Fall and
(b) AM peak discharge at Baltara. The nonparametric Gaussian kernel estimator shows the best fit for both the case
studies, followed by parametric GEV distribution.
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Figure 8: Comparison of stationary return period from Gaussian kernel estimator with (a) nonstationary return

period from GEV distribution and (b) nonstationary return period from lognormal distribution. Figure (c) shows the

comparison between nonstationary return period from GEV and lognormal distribution for AM peak discharge series
at the Kanawha Fall.

event series is a necessary initial step, which can be 1. A comprehensive trend analysis is performed to
achieved by comprehensive trend analysis. Therefore, assess the presence of nonstationarity in flood
the present study provides a framework for such a variable series. Nonparametric trend methods are
comprehensive trend analysis, which is appropriately found to be more efficient in capturing the statistical
needed to systematically perform the FFA. trend as compared to parametric tests. Parametric

Through this study, two nonstationary methods (RR trend method may lose their ability to capture the
factor and second-order nonstationary approaches) trend in time series due to their various assumptions.
are performed in the context to capture the effects of 2. A significant negative trend was evident in the AM
nonstationarity in the estimation of return periods versus peak discharge series at the Kanawha and Kosi
stream flows in two case studies. The results from the rivers as per both the parametric and nonparametric
present study have clearly pointed out that it is not only trend tests. No significant trend could be detected in
important to identify nonstationarity, but also necessary the POT-delineated series excluding the flood peak
to consider it in frequency estimation in order to obtain and average intensity series of the Kanawha River
more accurate quantile estimation. The major findings while all four flood variables showed no significant

obtained during this study are listed below: trend in the Kosi River basin. The residuals analysis
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Figure 9: Comparison of stationary return period from Gaussian kernel estimator with (a) nonstationary return

period from GEV distribution and (b) nonstationary return period from a lognormal distribution. Figure (c) shows

the comparison between nonstationary return period from GEV and lognormal distribution for AM peak discharge
series at Baltara.

underscored the unreliability of the parametric linear
regression technique for the POT-delineated series
on account of limitations related to parametric tests.
Hence, it may be concluded that a trend analysis
may not be completed without nonparametric trend
methods and residuals analysis to quantify the
accuracy of parametric test. The significant trends
in the AM peak discharge indicate the presence of
nonstationarity in the flood series.

Finally, the results underscored the significance
of accounting the impact of nonstationarity during
frequency estimation of extreme flood peak events.
The results show significant differences in estimation
of return periods considering stationarity and

nonstationarity during frequency estimation of extreme
flood peak events. Interestingly, the results obtained
from stationary and nonstationary FFA showed almost
the same return period for smaller peak events, whereas
the difference got magnified for higher peak events.
Also, the nonstationary FFA based on GEV and
lognormal distribution showed significant variation
in return period, which indicates that selection of
distribution plays a major role in the estimation of
return period. To improve the estimation of return
period, second-order nonstationary approaches were
implemented by using a 50-year moving window.
Additionally, from a comparison of first- and second-
order nonstationary FFA, it can be concluded that higher
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Figure 10: Comparison between return period calculated from second-order nonstationary modelling with GEV
distribution and (a) stationary return period with GEV distribution and (b) first-order nonstationary return period
estimated based on RR factor (for the quantile function of GEV distribution) for 15-year future time.

order nonstationary analysis provides more accurate
return periods estimation.

The findings of the present study indicate that
inclusion of nonstationarity during FFA, may direct
to accurate estimation of the RPs. However, it is
not always necessary to conduct nonstationarity, if
the change in climate and land use patterns are not
significantly influencing the characteristics of the flood
variables. In such cases, a provision must be given to
stationary FFA. To identify these pros and cons, trend
analysis must be conducted to identify stationarity/
nonstationarity in the event series.
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