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Abstract: This study evaluates the performance of simulated precipitation and maximum and minimum
temperatures in the historical runs of the Climate Model Intercomparison Project Phase 6 (CMIP6) for the
Vietnamese Mekong Delta (VMD). The precipitation, as well as maximum and minimum temperatures outputs
from 16 general circulation models (GCMs), were compared with observations from 12 stations for the period
19802014, using a set of statistical metrics, namely, normalised root mean square error (NRMSE), percentage of
bias (PBIAS), Nash—Sutcliffe efficiency (NSE), coefficient of determination (R?), and volumetric efficiency (VE).
Finally, ranking (total score - TS) was carried out and the probability distribution function (PDF) and Taylor diagram
were used to confirm rankings. The results show that different statistical indicators reveal variation ranking order
of the 16 GCMs. Based on RS ranking, it is indicated that each simulation GCM performed differently under the
different metrics and no single model performed best for all metrics. The top five highest ranked GCMs based
on TS were HadGEM3-GC31-LL, ACCESS-CM2, CanESMS5, NESM3 and CanESMS5-CanOE for precipitation;
and CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 for the maximum; and CNRM-
CM6-1, CNRM-ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 for minimum temperatures, respectively. We
also observed an underestimation of precipitation and an overestimation of temperature over the study area. The
TS method demonstrates efficiency to aggregate the multi-model ensemble GCMs based on different statistical
indicators which were sometimes contradictory. The findings from this study provide useful guidance in the
selection of GCMs for climate change applications in the VMD.

Keywords: General Circulation Models (GCMs); Climate Model Intercomparison Project Phase 6 (CMIP6);
Statistical metrics; Ranking score and total score (RS and TS); Vietnamese Mekong Delta.

Introduction Phase 6 (CMIP6) GCMs performance were published

by the year 2021 (Stoufter et al., 2017; Cui et al., 2021;

Since their initial publication in 2017, more than 70  Earth System Grid Federation, 2021). Understandably,
results of the Climate Model Intercomparison Project each CMIP6 GCM exhibits different degrees of
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performance due to the differences in their model
structure, parameterization, and initial conditions setting,
as well as differences in climate and topography (Guo et
al., 2021; Wang et al., 2021). Despite the same modeling
framework, the results of precipitation simulations vary
from model to model, and from nation to nation owing
to changes in the influencing factors, such as seasons,
topographical features, and ocean currents, all of which
contribute to the effectiveness of simulation models
(Desmet and Ngo, 2022). Furthermore, worldwide
testing has shown that CMIP6 GCMs performance
may vary due to geographical scope and topography
(Rivera and Arnould, 2020; Yazdandoost et al., 2021).
However, to date, only a few studies have examined
the efficiency of CMIP6 GCM precipitation simulations
for the Southeast Asia (SEA) region or the sub-domain
partitioning in the SEA region (Igbal et al., 2021).
Moreover, even fewer studies have shown different
precipitation trends for individual countries within SEA
(Thoeun, 2015; Piman et al., 2016; Phuong et al., 2019;
Pimonsree et al., 2022).

Shiru and Chung (2021) highlight the worldwide
increase in disaster frequencies, severities, and risks,
particularly droughts and floods (Asdak and Supian,
2018; Alamgir et al., 2019; Ayugi et al., 2020; Manawi
et al., 2020). These disasters are expected to increase
over time under various emission scenarios and GCMs,
the main instruments for climate prediction (Shiru et al.,
2020; Tan et al., 2020). However, to improve confidence
in future climate projections, the evaluation of GCMs
performance is strongly needed in order to develop
reliable and appropriate adaptation and mitigation
measures (Zhao et al., 2020). The evolution of GCMs
has been based on the different scenario developments
of the United Nations Intergovernmental Panel on
Climate Change (IPCC) assessment reports (the coupled
model inter-comparison project (CMIP) phase 3, phase
5, and the recently released phase 6). Numerous studies
have reported the improvement of the CMIP5 over the
CMIP3 and CMIP6 over its predecessor (Taylor et al.,
2012; Tanveer et al., 2016; Zhou et al., 2017; Tiwari
et al., 2022; Guo et al., 2023; Pimonsree et al., 2023).
Other recent studies have demonstrated the supremacy
of GCMs in CMIP6 for particular regions, such as South
Asia (Zhai et al., 2020), China (Xin et al., 2020; Guo
et al., 2023), South Korea (Song et al., 2020), Australia
(Grose et al., 2020), and Africa (Ayugi et al., 2021;
Shiru and Chung, 2021), as well as SEA (Pimonsree
et al., 2023). It is therefore of utmost importance to
further assessing their application and performance in

other regions to aid future climate projection (Shiru
and Chung, 2021).

Moreover, only a handful of studies have provided
an overview of climate change assessments for the SEA
region (Tinh et al., 2016; Ge et al., 2021; Ty et al.,
2022), reported that the CMIP6 multi-model ensemble
medians showed better performances in characterizing
precipitation extremes than individual models, while
projected changes in precipitation extremes increased
significantly over the Indochina Peninsula and the
Maritime Continent. Furthermore, Supharatid et al.
(2022) used the CMIP6 model to predict changes in
temperature and precipitation over mainland SEA, to
highlight the future climate risks to Cambodia, Laos,
Myanmar, Vietnam, and Thailand. In Vietnam, Khoi et
al. (2022) recently assessed the impact of future climate
change on river discharges in Ho Chi Minh City (using
a calibrated Soil and Water Assessment Tool (SWAT)
to simulate the discharge under seven GCMs derived
from CMIP6 and suggested that the city’s climate will
be warmer and wetter by the end of the 21 century.

When reviewing the existing studies a number of
important scientific knowledge gaps persist with a lack
of research that considers the scale effect of selecting
acceptable GCMs for assessing climate change at lower
spatial scales, such as the Vietnhamese Mekong delta
(VMD). As a result, the goal of this study is to select
the more applicable GCMs from the CMIP6 profile in
order to aggregate a multi-model ensemble across the
VMD region. This study uses the monthly precipitation,
maximum, and minimum temperature data from 12
stations in the VMD. Five statistical indices, namely,
the normalized root mean square error (NRMSE),
the percentage of bias (PBIAS), the Nash—Sutcliffe
efficiency (NSE), the coefficient of determination (R?),
and the volumetric efficiency (VE), were applied to
identify the performances of CMIP6 compared to the
observed precipitation, as well maximum and minimum
temperatures datasets. Finally, a probability distribution
function (PDF) and the Taylor diagram (TD) are used
to assess the performances of the GCMs.

Study Area

The VMD covers a large share of Southwest Vietnam
with a total area of more than 40,500 km2. The VMD
is one of the most fertile and intensively cultivated
regions worldwide, making it significant for national
social-economic development. The VMD shares
boundaries with Cambodia to the north, the East
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Sea to the southeast, and the Gulf of Thailand to the
southwest and Southeast. Administratively, it consists
of 12 provinces: Long An, Tien Giang, Ben Tre, Vinh
Long, Tra Vinh, Hau Giang, Soc Trang, Dong Thap, An
Giang, Kien Giang, Bac Lieu, and Ca Mau, as well as
one city, Can Tho City with a combined population of
17,273,630 in the year 2019 (or 18% of the nation’s
total population), at a population density 1.45 times
greater than the national average at 423 people per
square kilometer (Figure 1).

The VMD contributes roughly 50% of the nation’s rice
production, 95% of the nation’s export rice production,
about 65% of the nation’s aquaculture production, 60%
of the nation’s export fish, and 70% of the nation’s types
of fruits (Lavane et al., 2023; Ty et al., 2022; Minh et
al., 2022). For the years 20162018, the regional GDP
growth rate for the VMD averaged 6.95%, almost on
par with the national average for the same time period
(Tran, 2019). The climate of the VMD is influenced by
both the northeast and southwest monsoons. The dry
season typically lasts from December to April, and the
rainy season typically lasts from May to November. The
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flood season begins one to two months later than the
onset of the rainy season and ends nearly simultaneously
with it. During the flood season, the delta facilitates
water transport and drainage.

Methodology

GCM Data Collection and Analysis

For the assessment of precipitation and maximum and
minimum temperature variability, 16 GCMs belonging
to the CMIP6 experiments were utilised (Eyring et al.,
2016; Shiru and Chung, 2021). Table 1 provides an
overview of the analysed GCMs, with their respective
modelling groups, countries, and horizontal resolution.
The historical runs of these models were selected based
on the observed data availability in VMD - thus the
CMIP6 historical simulations that cover the period
19802014 were selected. Given that most of the models
have different spatial resolutions, the output from each
model was then grid-averaged to cover the entire VMD
to aid comparison.
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Figure 1: The study area highlighting the location of the meteorological stations.
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Table 1: The 16 selected GCMs of the CMIP6 utilized in this study

No Model name Modeling agency Resolution

1  ACCESS-CM2 Australian Community Climate and Earth System Simulator, Australia 1.88° % 1.25°
2 ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator, Australia 1.88° x 1.25°
3 BCC-ESMI Beijing Climate Center, China Meteorological Administration, China 2.81°x2.78°
4 CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.81° x2.78°
5  CanESM5-CanOE Canadian Centre for Climate Modelling and Analysis, Canada 2.81° x2.81°
6 CMCC-ESM2 Centre National de Recherches Météorologiques, France 1.40° x 1.40°
7  CNRM-CM6-1 National Centre for Meteorological Research 1.40° x 1.40°
8 CNRM-ESM2-1 National Centre for Meteorological Research 1.40° x 1.40°
9  FIO-ESM-2-0 The First Institute of Oceanography Earth System Model, China 1.25° x 0.90°
10 GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, United States 1.88° x 1.25°
11  HadGEM3-GC31-LL  Met Office Hadley Centre, UK 1.88° x 1.25°
12 INM-CMS5-0 Institute of Numerical Mathematics, Russia 2.00° x 1.50°
13 MIROC6 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 1.40° x 1.40°

Kanagawa

14 MIROC-ES2L
version 2, Japan

15 MRI-ESM2-0
16 NESM3

Meteorological Research Institute, Japan

The Nanjing University of Information Science and Technology, China

Model for Interdisciplinary Research on Climate - Earth System Simulation 2.81° x 2.81°

1.13°x1.13°
1.88° x 1.85°

Statistical Indices
There are a number of uncertainties in applying climate
projections which lead to the questionable reliability of
impact assessments (Woldemeskel et al., 2014). First
of all, the simple ensemble mean of all GCMs may
result in very high uncertainty due to the inclusion
of poor model performance; Second, considering all
models is often difficult due to the constraints of time
and computational resources. To overcome these issues,
the selection of a small range of GCMs from the large
CMIP6 database with good performance is often the
most suitable approach (Tiwari et al., 2023). Previous
studies have considered various statistical indicators
such as RMSE, R?, and standard deviation to assess
the potential of models (Srivastava et al., 2017; Pandey
and Dwivedi, 2021; Kumar et al., 2022). However,
the selection of GCMs based on variability/correlation
performance in the past may provide reliable future
projections in terms of pattern, but miss the possible
future mean changes (quantitatively) (Tiwari et al.,
2023). Therefore, it is clear that the criteria for selecting
the GCMs depend on the characteristics of the study
region of interest, the spatial assessment scale, as well
as other aspects of impact assessments.

In this study, five statistical indices were used to
evaluate the GCM performance including NRMSE,
PBIAS, NSE, R?, and VE. The statistical metrics used

and their considered acceptable levels of performance
in this study are as follows:

* Normalized root mean square error (NRMSE):
The magnitude of the errors in predictions for
various periods was calculated by the NRMSE
(Willmott, 1982). It is clearly indicated that the
closer the NRMSE value is to zero, the more
accurate/the better performance the model is

1/2
) 2
{n Zi:l (Xgim,i = Xobs,i)
1 <
; Zizl (xsim,i)

where, x;, . and x , . are the i"" simulated and observed

data; n is the number of observations.

* Percentage of bias (PBIAS): The Pbias measured
the under or over-estimate of the model to the
observed data. Model performance is better
when the PBIAS values are closer to zero;
while a negative/positive Pbias value indicates
overestimation underestimation (Gupta et al., 1999).

n
[Zi:l (xsim,i - xobs,i):|
n
Zi:l (xsim,i)

NRMSE =

Pbias = 100 x
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* Nash and Sutcliffe efficiency (NSE): The
quantitative statistic of Nash and Sutcliffe (1970)
was introduced in 1970. It is defined by the
following equation. NSE ranges between -
and 1.0; and NSE values from 0.0 and 1.0 are
considered acceptable levels of performance,
whereas values <0.0 are indicative of unacceptable
model performance in which the mean observed
value is a better predictor than the simulated value
(Moriasi et al., 2007).

Zl 1( sim,i obw)
Zl 1(xobs1 - obs

* Coefficient of determination (R*): R? values can
range between 0.0 and 1.0, in which a higher value
indicates a better agreement (Legates and McCabe,
1999) and R? is defined as follows.

2 Z, 1(xobsz -
\/ZI l(xwmt xwm) Z, l(xobw - nbv

* Volumetric efficiency (VE): The VE measures
the ratio between GCM and observed data over a
period, where a VE value of 1 indicates a perfect

estimation. It is defined as follows (Shiru and
Chung, 2021).

NSE =

obs) (xszm i xszm)

z, 1( sim,i — X

VE _ 1 obs,i)

i=1 obs,i
GCMs Ranking
The normalisation of each of the five metrics mentioned
above was used to calculate the score to rank GCMs.
The ranking score (RS) is defined as (Guo et al., 2022):

If the given metric is smaller the better,

max(E;) - E; ;
; :

RS,
" max(E;)—min(E;)
J J

If the given metric is larger the better,

E; ;- mjln(E,)

RS; = max(E;) — min(E;)
J J

where E. is the value of the ith performance metric
of the ]th GCM. The min, (Ez) and max; (Ez) indicate
the minimum and max1mum values across all models.
Finally, the total score (7S) for each GCM was obtained

by weighting the sum of all metrics to indicate the
credibility of model performance.

P
— > w; xRS,
i=1

where w; indicates the weight of each performance
metric.

While there may be differences among metrics,
however, equal weighting is still a valuable method to
assess climate model performance and is used in this
study (Guo et al., 2022) and for the case of TS - the
lower value indicates better simulation performance
with the model values closer to observation.

Taylor Diagrams

Taylor diagrams (Taylor, 2001) were used to summarize
the degree of correspondence between model simulations
and observations considering precipitation, and
maximum and minimum temperatures. These diagrams
typically combine three metrics: the correlation
coefficient, the standard deviation, and the RMSE
(Heo et al., 2014; Rivera and Arnould, 2020). The
uneven angular coordinate corresponds to the R; the
radial distance from the origin represents the ratio of
the standard deviation of the simulation to that of the
observation; and the distance from the observations is
a measure of the RMSE. Resultantly, the best model
simulation results are when the R and the standard
deviation are equal to 1 and the RMSE is close to 0.

Results and Discussion

Ranking of GCMs

Precipitation: The performance metrics for precipitation
of all CMIP6 GCMs and the ranking score (RS) and
the total score (7S) are shown in Table 2. Based on
TS, it is seen that the five best-ranked GCMs are
HadGEM3-GC31-LL, ACCESS-CM2, CanESMS5,
NESM3, and CanESM5-CanOE with 7S of 0.00, 8.76,
13.76, 14.17 and 15.6, respectively. It can also be seen
that the better-ranked GCMs in particular metrics (RS)
may not be the best performance based on 7. For
example, FIO-ESM-2-0 and ACCESS-ESM1-5 show
better performance in terms of PBIAS (RS of 8.70 and
7.90, respectively) but were classified as the worst
performing on other metrics; INM-CMS5-0 presents a
good performance in terms of R?, and MRI-ESM2-0
performs good of VE. However, these GCMs were not
ranked within the top five based on 7.
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Table 2: Performance metrics and ranking of precipitation CMIP6 GCMs based on RS and 7S

GCMs Ranking score (RS) Total score (TS)
NRMSE PBIAS NSE R’ VE
HadGEM3-GC31-LL 0.00 0.00 0.00 0.00 0.00 0.00
MIROC-ES2L 35.60 20.40 0.88 0.26 0.20 57.34
MIROC6 26.10 16.30 0.62 0.16 0.15 43.33
MRI-ESM2-0 17.00 11.00 0.39 0.11 0.09 28.59
GFDL-ESM4 19.40 11.90 0.45 0.14 0.11 32.00
BCC-ESM1 25.00 15.10 0.59 0.17 0.13 40.99
NESM3 11.00 2.70 0.24 0.18 0.05 14.17
FIO-ESM-2-0 21.30 8.70 0.50 0.27 0.14 30.91
CanESM5 9.00 4.50 0.20 0.01 0.05 13.76
CanESM5-CanOE 11.00 4.20 0.24 0.11 0.07 15.62
ACCESS-CM2 5.90 2.60 0.13 0.10 0.03 8.76
ACCESS-ESM1-5 13.20 7.90 0.29 0.12 0.07 21.58
CNRM-CM6-1 25.00 14.40 0.59 0.19 0.13 40.31
CNRM-ESM2-1 21.60 11.40 0.50 0.22 0.11 33.83
CMCC-ESM2 27.40 15.10 0.65 0.18 0.16 43.49
INM-CM35-0 33.70 13.40 0.83 0.49 0.20 48.62

Maximum temperature: The performance metrics
for maximum temperature for all selected CMIP6
GCMs and their ranking and total scores are shown in
Table 3. Based on T, the top five best-ranked GCMs
were MIROC6, ACCESS-ESM1-5, MIROC-ES2L,
CanESMS5, Can ESM5-CanOE with TS of 0.17; 18.47;
40.26; 70.55; and 72.07, respectively. Whilst, the
lowest-ranked GCM for maximum temperature using
the 7'S method was NESM3.

Minimum temperature: The performance metrics
for the minimum temperature of all selected CMIP6
GCMs and their ranking score and the total score is
shown in Table 4. Based on TS, it can be seen that for
minimum temperature, the top five best-ranked GCMs
were CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4,
NESM3 and INM-CM5-0 with TS of 14.78; 28.65;
78.52; 92.93; and 95.76, respectively. The lowest-
ranking GCM for minimum temperature using the TS
method was ACCESS-ESM1-5.

Based on the results presented in Tables 2, 3, and 4,
it can be seen that each simulation performed differently
over the different metrics. No single model was seen to
be best for all metrics. For example, in the study area,
INM-CM5-0 showed the best results for best R? and
VE (RS of 0.10 and 0.50, respectively), but the worst in
terms of NRMSE (RS of 165.8) and PBIAS (RS of 8.7)
for maximum temperature; however, it was ranked in the

best for minimum temperature (NRMSE (RS of 85.7),
PBIAS (RS of 7.4)). Moreover, NESM3 was ranked in
the best group for precipitation results (NRMSE (RS of
11) and PBIAS (RS of 2.7) and NSE (RS of 0.24)) and
minimum temperature (NRMSE (RS of 82) and PBIAS
(RS of 8.2) and NSE (RS of 2.36)); however, this model
performed worst in simulating maximum temperature
(NRMSE (RS of 255.8) and PBIAS (RS of 13.4) and
NSE (RS of 15.8)).

It is clearly indicated that the 7S method was
applied in this study to demonstrate its efficiency to
aggregate multi-model ensemble GCMs based on the
different statistical indicators which are sometimes
contradictory as per the above discussion. This suggests
the application of other criteria such as PDF curves,
TD, and mean monthly precipitation/maximum and
minimum temperatures to compare the GCMs with the
corresponding observations are shown to be efficient as
they all support the findings from the 7.

Comparison of the Mean Monthly GCMs Data
with the Observed Values

The mean monthly precipitation, maximum temperature,
and minimum temperature for the GCMs compared
to the observed data from 1980 to 2014 are presented
in Figures 2a, b, and c, respectively. For precipitation
(Figure 2a), most of the GCMs were found to perform
to an acceptable degree during the dry season from
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Table 3: Performance metrics and ranking of maximum temperature CMIP6 GCMs based on RS and TS

GCMs Ranking score (RS) Total score (TS)
NRMSE PBIAS NSE R’ VE

HadGEM3-GC31-LL 73.00 4.50 3.17 0.21 0.04 80.92
MIROC-ES2L 36.20 2.40 1.44 0.20 0.02 40.26
MIROC6 0.00 0.00 0.00 0.17 0.00 0.17

MRI-ESM2-0 67.20 4.20 2.88 0.17 0.04 74.49
GFDL-ESM4 131.20 7.30 6.47 0.24 0.07 145.28
BCC-ESM1 96.70 4.90 443 0.50 0.05 106.58
NESM3 255.80 13.40 15.81 0.24 0.13 285.38
FIO-ESM-2-0 115.60 6.30 5.52 0.42 0.06 127.90
CanESM5 63.00 4.10 2.68 0.15 0.04 69.97
CanESM5-CanOE 64.90 4.20 2.77 0.16 0.04 72.07
ACCESS-CM2 70.80 4.20 3.07 0.41 0.04 78.52
ACCESS-ESM1-5 15.90 1.80 0.60 0.16 0.01 18.47
CNRM-CM6-1 126.10 7.30 6.16 0.00 0.07 139.63
CNRM-ESM2-1 110.90 6.50 5.25 0.09 0.06 122.80
CMCC-ESM2 81.30 4.60 3.60 0.43 0.04 89.97
INM-CM5-0 165.80 8.70 8.75 0.51 0.08 183.84

Table 4: Performance metrics and ranking of minimum temperature CMIP6 GCMs based on RS and 7S

Ranking score (RS)

GCMs Total score (TS)
NRMSE PBIAS NSE R? VE
HadGEM3-GC31-LL 121.20 4.60 3.96 0.04 0.10 129.90
MIROC-ES2L 95.00 6.70 2.86 0.08 0.08 104.72
MIROC6 87.20 7.40 2.55 0.07 0.07 97.29
MRI-ESM2-0 108.90 5.50 3.42 0.02 0.09 117.93
GFDL-ESM4 67.90 8.70 1.86 0.00 0.06 78.52
BCC-ESM1 139.80 3.30 4.83 0.09 0.11 148.13
NESM3 82.00 8.20 2.36 0.31 0.06 92.93
FIO-ESM-2-0 98.30 6.30 2.99 0.02 0.08 107.69
CanESMS5 142.20 2.90 4.95 0.00 0.11 150.16
CanESM5-CanOE 139.70 3.10 4.83 0.00 0.11 147.74
ACCESS-CM2 152.70 2.10 5.47 0.02 0.12 160.41
ACCESS-ESM1-5 181.80 0.00 7.04 0.03 0.14 189.01
CNRM-CM6-1 0.00 14.70 0.00 0.08 0.00 14.78
CNRM-ESM2-1 14.80 13.40 0.33 0.11 0.01 28.65
CMCC-ESM2 133.50 3.70 4.53 0.05 0.11 141.89
INM-CM5-0 85.70 7.40 2.50 0.09 0.07 95.76

December to April, as this is a period of little variability
However, high variability in the GCMs precipitation
compared to the observation during the wet season
(May to November) in the VMD was seen. It can be
seen that all 16 GCMs significantly underestimated the

precipitation during 1980-2014. Compared the results
from a previous study in Asia undertaken by Tiwari et al.
(2023) evaluating the Northeast monsoon precipitation
over India, indicated that monsoon precipitation poses
strong month-to-month variability, and changes in the
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Figure 2: The mean monthly (a) precipitation, (b)
maximum temperature, and (¢) minimum temperature
for the GCMs compared to the observation for 1980-2014.

individual month might also be different. In addition, for
maximum and minimum temperatures (Figure 2b and c),
it is interesting that all 16 GCMs showed a significant
overestimation of both the maximum and minimum
temperature for the period 1980-2014.

Performance Assessment

The Taylor diagram provides a good statistical summary
of R?, standard deviations (SD), and RMSE between
the simulation and the observed data. In this study,
the performances of GCMs precipitation, maximum

temperature, and minimum temperatures, respectively in
comparison to their corresponding observations. Though
the SD were all different, the correlation between the
simulation and observation of most of the GCMs was
found to range from 0.6 to 0.8 for the precipitation, from
0.5 to 0.7 for maximum temperature, and 0.7 to 0.8 for
minimum temperature (Figure 3). All these ranges are
acceptable for future predictions based on the proposed
ranges of Moriasi et al. (2015). It is clearly indicated
that the highest-ranked GCMs show higher correlations.
It is also shown that most of the GCMs have lower SD
compared to their corresponding observations.

Comparison Using Probability Density

Function (PDF)

The PDFs of the mean monthly precipitation, maximum
temperature, and minimum temperature modeled
results compared with actual observation for the period
1980-2014 in the VMD are presented in Figures
4a,b, and c, respectively. It can be seen that most of
the GCMs were not able to capture the precipitation
and maximum temperature properties accurately, in
particular the mean. However, the distribution of the
modeled precipitation results relative to the observation
data varies more for all 16 GCMs which all showed
a significant underestimation of the precipitation
values. Additionally, all 16 selected GCMs showed
underestimations of maximum temperature. The PDF
distributions show that the majority of the maximum
temperature distributions are around 29°C. For the
minimum temperature, PDFs of the GCMs compared to
the observation show an overestimation in all 16 GCMs
with the majority of values around 27°C.

Selection of Multi-Models for Future Projection
The different results from each metric have been
summed up to provide the overall performance of each
model suite using the results of RS. GCMs performance
was finally ranked by summarising all relative error
values derived from all indicators (7S) - the lower the
value indicates better model performance, with modeled
values closer to those observed. The final ranking orders
of the 16 GCMs are shown in Figure 5.

It can be seen that for precipitation, the best-
ranking GCMs were HadGEM3-GC31-LL, ACCESS-
CM2, CanESM5, NESM3 and CanESM5-CanOE;
while MIROC6, ACCESS-ESM1-5, MIROC-ES2L,
CanESMS5 and CanESMS5-CanOE were ranked best
in terms of modeled maximum temperature. Whereas
for minimum temperature, CNRM-CM6-1, CNRM-
ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 were
ranked top.
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Figure 3: Taylor diagrams represent the correlation between the corresponding observations to (a) GCM precipitation,
(b) GCM maximum temperature, and (¢) GCM minimum temperature.

Conclusions

This study assessed the performances of 16 selected
GCMs of the CMIP6 suite for their modeling
performance of precipitation, maximum temperature,
and minimum temperature over the VMD using five
statistical indicators, NRMSE, PBIAS, NSE, R?, and

VE, and supplemented by PDF plots and TD for
the period 1980-2014. The results highlight that the
different statistical indicators reveal different ranking
orders for all 16 GCMs. Based on RS ranking, it can be
seen that each simulation GCM performed differently
on the differing metrics, and no single model performed
best on all metrics.
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Figure 5: Final ranking of the 16 selected GCMs based
on TS results.

The top five highest ranked GCMs-based on TS
were HadGEM3-GC31-LL, ACCESS-CM2, CanESMS5,
NESM3 and CanESMS5-CanOE for precipitation;
and CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4,
NESM3 and INM-CM5-0 for the maximum; and
CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4,
NESM3 and INM-CMS5-0 for minimum temperatures.
It is also observed that generally there was an
underestimation of precipitation and an overestimation
of temperature. The TS method demonstrated efficiency
to aggregate a multi-model ensemble GCMs based on
the different statistical indicators which were often
contradictory.

The findings from this study provide an understanding
and insights into the understanding of future climate
variability for the VMD based on CMIP6. Accurate
data on future climate change from GCMs are a very
important tool in not only assessing risks but also
addressing future climate resilience. Going forward, the
findings from this study provide useful information for
the selection of GCMs for the VMD in particular since
the simulation of precipitation values in tropical areas is
complex due to both temporal and spatial characteristics.
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