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Abstract: This study evaluates the performance of simulated precipitation and maximum and minimum 
temperatures in the historical runs of the Climate Model Intercomparison Project Phase 6 (CMIP6) for the 
Vietnamese Mekong Delta (VMD). The precipitation, as well as maximum and minimum temperatures outputs 
from 16 general circulation models (GCMs), were compared with observations from 12 stations for the period 
1980–2014, using a set of statistical metrics, namely, normalised root mean square error (NRMSE), percentage of 
bias (PBIAS), Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and volumetric efficiency (VE). 
Finally, ranking (total score - TS) was carried out and the probability distribution function (PDF) and Taylor diagram 
were used to confirm rankings. The results show that different statistical indicators reveal variation ranking order 
of the 16 GCMs. Based on RS ranking, it is indicated that each simulation GCM performed differently under the 
different metrics and no single model performed best for all metrics. The top five highest ranked GCMs based 
on TS were HadGEM3-GC31-LL, ACCESS-CM2, CanESM5, NESM3 and CanESM5-CanOE for precipitation; 
and CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 for the maximum; and CNRM-
CM6-1, CNRM-ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 for minimum temperatures, respectively. We 
also observed an underestimation of precipitation and an overestimation of temperature over the study area. The 
TS method demonstrates efficiency to aggregate the multi-model ensemble GCMs based on different statistical 
indicators which were sometimes contradictory. The findings from this study provide useful guidance in the 
selection of GCMs for climate change applications in the VMD.

Keywords: General Circulation Models (GCMs); Climate Model Intercomparison Project Phase 6 (CMIP6); 
Statistical metrics; Ranking score and total score (RS and TS); Vietnamese Mekong Delta.

Introduction

Since their initial publication in 2017, more than 70 
results of the Climate Model Intercomparison Project 

Phase 6 (CMIP6) GCMs performance were published 
by the year 2021 (Stouffer et al., 2017; Cui et al., 2021; 
Earth System Grid Federation, 2021). Understandably, 
each CMIP6 GCM exhibits different degrees of 
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performance due to the differences in their model 
structure, parameterization, and initial conditions setting, 
as well as differences in climate and topography (Guo et 
al., 2021; Wang et al., 2021). Despite the same modeling 
framework, the results of precipitation simulations vary 
from model to model, and from nation to nation owing 
to changes in the influencing factors, such as seasons, 
topographical features, and ocean currents, all of which 
contribute to the effectiveness of simulation models 
(Desmet and Ngo, 2022). Furthermore, worldwide 
testing has shown that CMIP6 GCMs performance 
may vary due to geographical scope and topography 
(Rivera and Arnould, 2020; Yazdandoost et al., 2021). 
However, to date, only a few studies have examined 
the efficiency of CMIP6 GCM precipitation simulations 
for the Southeast Asia (SEA) region or the sub-domain 
partitioning in the SEA region (Iqbal et al., 2021). 
Moreover, even fewer studies have shown different 
precipitation trends for individual countries within SEA 
(Thoeun, 2015; Piman et al., 2016; Phuong et al., 2019; 
Pimonsree et al., 2022).

Shiru and Chung (2021) highlight the worldwide 
increase in disaster frequencies, severities, and risks, 
particularly droughts and floods (Asdak and Supian, 
2018; Alamgir et al., 2019; Ayugi et al., 2020; Manawi 
et al., 2020). These disasters are expected to increase 
over time under various emission scenarios and GCMs, 
the main instruments for climate prediction (Shiru et al., 
2020; Tan et al., 2020). However, to improve confidence 
in future climate projections, the evaluation of GCMs 
performance is strongly needed in order to develop 
reliable and appropriate adaptation and mitigation 
measures (Zhao et al., 2020). The evolution of GCMs 
has been based on the different scenario developments 
of the United Nations Intergovernmental Panel on 
Climate Change (IPCC) assessment reports (the coupled 
model inter-comparison project (CMIP) phase 3, phase 
5, and the recently released phase 6). Numerous studies 
have reported the improvement of the CMIP5 over the 
CMIP3 and CMIP6 over its predecessor (Taylor et al., 
2012; Tanveer et al., 2016; Zhou et al., 2017; Tiwari 
et al., 2022; Guo et al., 2023; Pimonsree et al., 2023). 
Other recent studies have demonstrated the supremacy 
of GCMs in CMIP6 for particular regions, such as South 
Asia (Zhai et al., 2020), China (Xin et al., 2020; Guo 
et al., 2023), South Korea (Song et al., 2020), Australia 
(Grose et al., 2020), and Africa (Ayugi et al., 2021; 
Shiru and Chung, 2021), as well as SEA (Pimonsree 
et al., 2023). It is therefore of utmost importance to 
further assessing their application and performance in 

other regions to aid future climate projection (Shiru 
and Chung, 2021).

Moreover, only a handful of studies have provided 
an overview of climate change assessments for the SEA 
region (Tinh et al., 2016; Ge et al., 2021; Ty et al., 
2022), reported that the CMIP6 multi-model ensemble 
medians showed better performances in characterizing 
precipitation extremes than individual models, while 
projected changes in precipitation extremes increased 
significantly over the Indochina Peninsula and the 
Maritime Continent. Furthermore, Supharatid et al. 
(2022) used the CMIP6 model to predict changes in 
temperature and precipitation over mainland SEA, to 
highlight the future climate risks to Cambodia, Laos, 
Myanmar, Vietnam, and Thailand. In Vietnam, Khoi et 
al. (2022) recently assessed the impact of future climate 
change on river discharges in Ho Chi Minh City (using 
a calibrated Soil and Water Assessment Tool (SWAT) 
to simulate the discharge under seven GCMs derived 
from CMIP6 and suggested that the city’s climate will 
be warmer and wetter by the end of the 21st century.

When reviewing the existing studies a number of 
important scientific knowledge gaps persist with a lack 
of research that considers the scale effect of selecting 
acceptable GCMs for assessing climate change at lower 
spatial scales, such as the Vietnamese Mekong delta 
(VMD). As a result, the goal of this study is to select 
the more applicable GCMs from the CMIP6 profile in 
order to aggregate a multi-model ensemble across the 
VMD region. This study uses the monthly precipitation, 
maximum, and minimum temperature data from 12 
stations in the VMD. Five statistical indices, namely, 
the normalized root mean square error (NRMSE), 
the percentage of bias (PBIAS), the Nash–Sutcliffe 
efficiency (NSE), the coefficient of determination (R2), 
and the volumetric efficiency (VE), were applied to 
identify the performances of CMIP6 compared to the 
observed precipitation, as well maximum and minimum 
temperatures datasets. Finally, a probability distribution 
function (PDF) and the Taylor diagram (TD) are used 
to assess the performances of the GCMs.

Study Area

The VMD covers a large share of Southwest Vietnam 
with a total area of more than 40,500 km2. The VMD 
is one of the most fertile and intensively cultivated 
regions worldwide, making it significant for national 
social-economic development. The VMD shares 
boundaries with Cambodia to the north, the East 
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Sea to the southeast, and the Gulf of Thailand to the 
southwest and Southeast. Administratively, it consists 
of 12 provinces: Long An, Tien Giang, Ben Tre, Vinh 
Long, Tra Vinh, Hau Giang, Soc Trang, Dong Thap, An 
Giang, Kien Giang, Bac Lieu, and Ca Mau, as well as 
one city, Can Tho City with a combined population of 
17,273,630 in the year 2019 (or 18% of the nation’s 
total population), at a population density 1.45 times 
greater than the national average at 423 people per 
square kilometer (Figure 1).

The VMD contributes roughly 50% of the nation’s rice 
production, 95% of the nation’s export rice production, 
about 65% of the nation’s aquaculture production, 60% 
of the nation’s export fish, and 70% of the nation’s types 
of fruits (Lavane et al., 2023; Ty et al., 2022; Minh et 
al., 2022). For the years 2016–2018, the regional GDP 
growth rate for the VMD averaged 6.95%, almost on 
par with the national average for the same time period 
(Tran, 2019). The climate of the VMD is influenced by 
both the northeast and southwest monsoons. The dry 
season typically lasts from December to April, and the 
rainy season typically lasts from May to November. The 

flood season begins one to two months later than the 
onset of the rainy season and ends nearly simultaneously 
with it. During the flood season, the delta facilitates 
water transport and drainage. 

Methodology

GCM Data Collection and Analysis
For the assessment of precipitation and maximum and 
minimum temperature variability, 16 GCMs belonging 
to the CMIP6 experiments were utilised (Eyring et al., 
2016; Shiru and Chung, 2021). Table 1 provides an 
overview of the analysed GCMs, with their respective 
modelling groups, countries, and horizontal resolution. 
The historical runs of these models were selected based 
on the observed data availability in VMD - thus the 
CMIP6 historical simulations that cover the period 
1980–2014 were selected. Given that most of the models 
have different spatial resolutions, the output from each 
model was then grid-averaged to cover the entire  VMD 
to aid comparison.

Figure 1: The study area highlighting the location of the meteorological stations.
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Table 1: The 16 selected GCMs of the CMIP6 utilized in this study

No Model name Modeling agency Resolution
1 ACCESS-CM2 Australian Community Climate and Earth System Simulator, Australia 1.88° × 1.25°
2 ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator, Australia 1.88° × 1.25°
3 BCC-ESM1 Beijing Climate Center, China Meteorological Administration, China 2.81° × 2.78°
4 CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.81° × 2.78°
5 CanESM5-CanOE Canadian Centre for Climate Modelling and Analysis, Canada 2.81° × 2.81°
6 CMCC-ESM2 Centre National de Recherches Météorologiques, France 1.40° × 1.40°
7 CNRM-CM6-1 National Centre for Meteorological Research 1.40° × 1.40°
8 CNRM-ESM2-1 National Centre for Meteorological Research 1.40° × 1.40°
9 FIO-ESM-2-0 The First Institute of Oceanography Earth System Model, China 1.25° × 0.90°
10 GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, United States 1.88° × 1.25°
11 HadGEM3-GC31-LL Met Office Hadley Centre, UK 1.88° × 1.25°
12 INM-CM5-0 Institute of Numerical Mathematics, Russia 2.00° × 1.50°
13 MIROC6 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 

Kanagawa
1.40° × 1.40°

14 MIROC-ES2L Model for Interdisciplinary Research on Climate - Earth System Simulation 
version 2, Japan

2.81° × 2.81°

15 MRI-ESM2-0 Meteorological Research Institute, Japan 1.13° × 1.13°
16 NESM3 The Nanjing University of Information Science and Technology, China 1.88° × 1.85°

Statistical Indices
There are a number of uncertainties in applying climate 
projections which lead to the questionable reliability of 
impact assessments (Woldemeskel et al., 2014). First 
of all, the simple ensemble mean of all GCMs may 
result in very high uncertainty due to the inclusion 
of poor model performance; Second, considering all 
models is often difficult due to the constraints of time 
and computational resources. To overcome these issues, 
the selection of a small range of GCMs from the large 
CMIP6 database with good performance is often the 
most suitable approach (Tiwari et al., 2023). Previous 
studies have considered various statistical indicators 
such as RMSE, R2, and standard deviation to assess 
the potential of models (Srivastava et al., 2017; Pandey 
and Dwivedi, 2021; Kumar et al., 2022). However, 
the selection of GCMs based on variability/correlation 
performance in the past may provide reliable future 
projections in terms of pattern, but miss the possible 
future mean changes (quantitatively) (Tiwari et al., 
2023). Therefore, it is clear that the criteria for selecting 
the GCMs depend on the characteristics of the study 
region of interest, the spatial assessment scale, as well 
as other aspects of impact assessments.

In this study, five statistical indices were used to 
evaluate the GCM performance including NRMSE, 
PBIAS, NSE, R2, and VE. The statistical metrics used 

and their considered acceptable levels of performance 
in this study are as follows:

	 •	 Normalized root mean square error (NRMSE): 
The magnitude of the errors in predictions for 
various periods was calculated by the NRMSE 
(Willmott, 1982). It is clearly indicated that the 
closer the NRMSE value is to zero, the more 
accurate/the better performance the model is
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	 •	 Percentage of bias (PBIAS): The Pbias measured 
the under or over-estimate of the model to the 
observed data. Model performance is better 
when the PBIAS values are closer to zero; 
while a negative/positive Pbias value indicates 
overestimation underestimation (Gupta et al., 1999).
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	 •	 Nash and Sutcliffe efficiency (NSE): The 
quantitative statistic of Nash and Sutcliffe (1970) 
was introduced in 1970. It is defined by the 
following equation. NSE ranges between -∞ 
and 1.0; and NSE values from 0.0 and 1.0 are 
considered acceptable levels of performance, 
whereas values <0.0 are indicative of unacceptable 
model performance in which the mean observed 
value is a better predictor than the simulated value 
(Moriasi et al., 2007).
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	 •	 Coefficient of determination (R2): R2 values can 
range between 0.0 and 1.0, in which a higher value 
indicates a better agreement (Legates and McCabe, 
1999) and R2 is defined as follows.
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	 •	 Volumetric efficiency (VE): The VE measures 

the ratio between GCM and observed data over a 
period, where a VE value of 1 indicates a perfect 
estimation. It is defined as follows (Shiru and 
Chung, 2021).
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GCMs Ranking
The normalisation of each of the five metrics mentioned 
above was used to calculate the score to rank GCMs. 
The ranking score (RS) is defined as (Guo et al., 2022):

If the given metric is smaller the better,
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If the given metric is larger the better,
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where Ei,jis the value of the ith performance metric 
of the jth GCM. The minj(Ei) and maxj(Ei) indicate 
the minimum and maximum values across all models. 
Finally, the total score (TS) for each GCM was obtained 

by weighting the sum of all metrics to indicate the 
credibility of model performance.
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where wi indicates the weight of each performance 
metric.

While there may be differences among metrics, 
however, equal weighting is still a valuable method to 
assess climate model performance and is used in this 
study (Guo et al., 2022) and for the case of TS - the 
lower value indicates better simulation performance 
with the model values closer to observation.

Taylor Diagrams 
Taylor diagrams (Taylor, 2001) were used to summarize 
the degree of correspondence between model simulations 
and observations considering precipitation, and 
maximum and minimum temperatures. These diagrams 
typically combine three metrics: the correlation 
coefficient, the standard deviation, and the RMSE 
(Heo et al., 2014; Rivera and Arnould, 2020). The 
uneven angular coordinate corresponds to the R; the 
radial distance from the origin represents the ratio of 
the standard deviation of the simulation to that of the 
observation; and the distance from the observations is 
a measure of the RMSE. Resultantly, the best model 
simulation results are when the R and the standard 
deviation are equal to 1 and the RMSE is close to 0.

Results and Discussion

Ranking of GCMs
Precipitation: The performance metrics for precipitation 
of all CMIP6 GCMs and the ranking score (RS) and 
the total score (TS) are shown in Table 2. Based on 
TS, it is seen that the five best-ranked GCMs are 
HadGEM3-GC31-LL, ACCESS-CM2, CanESM5, 
NESM3, and CanESM5-CanOE with TS of 0.00, 8.76, 
13.76, 14.17 and 15.6, respectively. It can also be seen 
that the better-ranked GCMs in particular metrics (RS) 
may not be the best performance based on TS. For 
example, FIO-ESM-2-0 and ACCESS-ESM1-5 show 
better performance in terms of PBIAS (RS of 8.70 and 
7.90, respectively) but were classified as the worst 
performing on other metrics; INM-CM5-0 presents a 
good performance in terms of R2, and MRI-ESM2-0 
performs good of VE. However, these GCMs were not 
ranked within the top five based on TS.
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Table 2: Performance metrics and ranking of precipitation CMIP6 GCMs based on RS and TS

GCMs Ranking score (RS) Total score (TS)
NRMSE PBIAS NSE R2 VE

HadGEM3-GC31-LL 0.00 0.00 0.00 0.00 0.00 0.00
MIROC-ES2L 35.60 20.40 0.88 0.26 0.20 57.34
MIROC6 26.10 16.30 0.62 0.16 0.15 43.33
MRI-ESM2-0 17.00 11.00 0.39 0.11 0.09 28.59
GFDL-ESM4 19.40 11.90 0.45 0.14 0.11 32.00
BCC-ESM1 25.00 15.10 0.59 0.17 0.13 40.99
NESM3 11.00 2.70 0.24 0.18 0.05 14.17
FIO-ESM-2-0 21.30 8.70 0.50 0.27 0.14 30.91
CanESM5 9.00 4.50 0.20 0.01 0.05 13.76
CanESM5-CanOE 11.00 4.20 0.24 0.11 0.07 15.62
ACCESS-CM2 5.90 2.60 0.13 0.10 0.03 8.76
ACCESS-ESM1-5 13.20 7.90 0.29 0.12 0.07 21.58
CNRM-CM6-1 25.00 14.40 0.59 0.19 0.13 40.31
CNRM-ESM2-1 21.60 11.40 0.50 0.22 0.11 33.83
CMCC-ESM2 27.40 15.10 0.65 0.18 0.16 43.49
INM-CM5-0 33.70 13.40 0.83 0.49 0.20 48.62

Maximum temperature: The performance metrics 
for maximum temperature for all selected CMIP6 
GCMs and their ranking and total scores are shown in 
Table 3. Based on TS, the top five best-ranked GCMs 
were MIROC6, ACCESS-ESM1-5, MIROC-ES2L, 
CanESM5, Can ESM5-CanOE with TS of 0.17; 18.47; 
40.26; 70.55; and 72.07, respectively. Whilst, the 
lowest-ranked GCM for maximum temperature using 
the TS method was NESM3.

Minimum temperature: The performance metrics 
for the minimum temperature of all selected CMIP6 
GCMs and their ranking score and the total score is 
shown in Table 4. Based on TS, it can be seen that for 
minimum temperature, the top five best-ranked GCMs 
were CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, 
NESM3 and INM-CM5-0 with TS of 14.78; 28.65; 
78.52; 92.93; and 95.76, respectively. The lowest-
ranking GCM for minimum temperature using the TS 
method was ACCESS-ESM1-5.

Based on the results presented in Tables 2, 3, and 4, 
it can be seen that each simulation performed differently 
over the different metrics. No single model was seen to 
be best for all metrics. For example, in the study area, 
INM-CM5-0 showed the best results for best R2 and 
VE (RS of 0.10 and 0.50, respectively), but the worst in 
terms of NRMSE (RS of 165.8) and PBIAS (RS of 8.7) 
for maximum temperature; however, it was ranked in the 

best for minimum temperature (NRMSE (RS of 85.7), 
PBIAS (RS of 7.4)). Moreover, NESM3 was ranked in 
the best group for precipitation results (NRMSE (RS of 
11) and PBIAS (RS of 2.7) and NSE (RS of 0.24)) and 
minimum temperature (NRMSE (RS of 82) and PBIAS 
(RS of 8.2) and NSE (RS of 2.36)); however, this model 
performed worst in simulating maximum temperature 
(NRMSE (RS of 255.8) and PBIAS (RS of 13.4) and 
NSE (RS of 15.8)).

It is clearly indicated that the TS method was 
applied in this study to demonstrate its efficiency to 
aggregate multi-model ensemble GCMs based on the 
different statistical indicators which are sometimes 
contradictory as per the above discussion. This suggests 
the application of other criteria such as PDF curves, 
TD, and mean monthly precipitation/maximum and 
minimum temperatures to compare the GCMs with the 
corresponding observations are shown to be efficient as 
they all support the findings from the TS.

Comparison of the Mean Monthly GCMs Data 
with the Observed Values
The mean monthly precipitation, maximum temperature, 
and minimum temperature for the GCMs compared 
to the observed data from 1980 to 2014 are presented 
in Figures 2a, b, and c, respectively. For precipitation 
(Figure 2a), most of the GCMs were found to perform 
to an acceptable degree during the dry season from 
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Table 3: Performance metrics and ranking of maximum temperature CMIP6 GCMs based on RS and TS

GCMs Ranking score (RS) Total score (TS)
NRMSE PBIAS NSE R2 VE

HadGEM3-GC31-LL 73.00 4.50 3.17 0.21 0.04 80.92
MIROC-ES2L 36.20 2.40 1.44 0.20 0.02 40.26
MIROC6 0.00 0.00 0.00 0.17 0.00 0.17
MRI-ESM2-0 67.20 4.20 2.88 0.17 0.04 74.49
GFDL-ESM4 131.20 7.30 6.47 0.24 0.07 145.28
BCC-ESM1 96.70 4.90 4.43 0.50 0.05 106.58
NESM3 255.80 13.40 15.81 0.24 0.13 285.38
FIO-ESM-2-0 115.60 6.30 5.52 0.42 0.06 127.90
CanESM5 63.00 4.10 2.68 0.15 0.04 69.97
CanESM5-CanOE 64.90 4.20 2.77 0.16 0.04 72.07
ACCESS-CM2 70.80 4.20 3.07 0.41 0.04 78.52
ACCESS-ESM1-5 15.90 1.80 0.60 0.16 0.01 18.47
CNRM-CM6-1 126.10 7.30 6.16 0.00 0.07 139.63
CNRM-ESM2-1 110.90 6.50 5.25 0.09 0.06 122.80
CMCC-ESM2 81.30 4.60 3.60 0.43 0.04 89.97
INM-CM5-0 165.80 8.70 8.75 0.51 0.08 183.84

Table 4: Performance metrics and ranking of minimum temperature CMIP6 GCMs based on RS and TS

GCMs
Ranking score (RS)

Total score (TS)
NRMSE PBIAS NSE R2 VE

HadGEM3-GC31-LL 121.20 4.60 3.96 0.04 0.10 129.90
MIROC-ES2L 95.00 6.70 2.86 0.08 0.08 104.72
MIROC6 87.20 7.40 2.55 0.07 0.07 97.29
MRI-ESM2-0 108.90 5.50 3.42 0.02 0.09 117.93
GFDL-ESM4 67.90 8.70 1.86 0.00 0.06 78.52
BCC-ESM1 139.80 3.30 4.83 0.09 0.11 148.13
NESM3 82.00 8.20 2.36 0.31 0.06 92.93
FIO-ESM-2-0 98.30 6.30 2.99 0.02 0.08 107.69
CanESM5 142.20 2.90 4.95 0.00 0.11 150.16
CanESM5-CanOE 139.70 3.10 4.83 0.00 0.11 147.74
ACCESS-CM2 152.70 2.10 5.47 0.02 0.12 160.41
ACCESS-ESM1-5 181.80 0.00 7.04 0.03 0.14 189.01
CNRM-CM6-1 0.00 14.70 0.00 0.08 0.00 14.78
CNRM-ESM2-1 14.80 13.40 0.33 0.11 0.01 28.65
CMCC-ESM2 133.50 3.70 4.53 0.05 0.11 141.89
INM-CM5-0 85.70 7.40 2.50 0.09 0.07 95.76

December to April, as this is a period of little variability 
However, high variability in the GCMs precipitation 
compared to the observation during the wet season 
(May to November) in the VMD was seen. It can be 
seen that all 16 GCMs significantly underestimated the 

precipitation during 1980–2014. Compared the results 
from a previous study in Asia undertaken by Tiwari et al. 
(2023) evaluating the Northeast monsoon precipitation 
over India, indicated that monsoon precipitation poses 
strong month-to-month variability, and changes in the 
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individual month might also be different. In addition, for 
maximum and minimum temperatures (Figure 2b and c), 
it is interesting that all 16 GCMs showed a significant 
overestimation of both the maximum and minimum 
temperature for the period 1980–2014.

Performance Assessment 
The Taylor diagram provides a good statistical summary 
of R2, standard deviations (SD), and RMSE between 
the simulation and the observed data. In this study, 
the performances of GCMs precipitation, maximum 

(a) Precipitation

(b) Maximum temperature

(c) Minimum temperature
Figure 2: The mean monthly (a) precipitation, (b) 
maximum temperature, and (c) minimum temperature 
for the GCMs compared to the observation for 1980–2014.

temperature, and minimum temperatures, respectively in 
comparison to their corresponding observations. Though 
the SD were all different, the correlation between the 
simulation and observation of most of the GCMs was 
found to range from 0.6 to 0.8 for the precipitation, from 
0.5 to 0.7 for maximum temperature, and 0.7 to 0.8 for 
minimum temperature (Figure 3). All these ranges are 
acceptable for future predictions based on the proposed 
ranges of Moriasi et al. (2015). It is clearly indicated 
that the highest-ranked GCMs show higher correlations. 
It is also shown that most of the GCMs have lower SD 
compared to their corresponding observations.

Comparison Using Probability Density 
Function (PDF)
The PDFs of the mean monthly precipitation, maximum 
temperature, and minimum temperature modeled 
results compared with actual observation for the period 
1980–2014 in the VMD are presented in Figures 
4a,b, and c, respectively. It can be seen that most of 
the GCMs were not able to capture the precipitation 
and maximum temperature properties accurately, in 
particular the mean. However, the distribution of the 
modeled precipitation results relative to the observation 
data varies more for all 16 GCMs which all showed 
a significant underestimation of the precipitation 
values. Additionally, all 16 selected GCMs showed 
underestimations of maximum temperature. The PDF 
distributions show that the majority of the maximum 
temperature distributions are around 29°C. For the 
minimum temperature, PDFs of the GCMs compared to 
the observation show an overestimation in all 16 GCMs 
with the majority of values around 27°C. 

Selection of Multi‑Models for Future Projection
The different results from each metric have been 
summed up to provide the overall performance of each 
model suite using the results of RS. GCMs performance 
was finally ranked by summarising all relative error 
values derived from all indicators (TS) - the lower the 
value indicates better model performance, with modeled 
values closer to those observed. The final ranking orders 
of the 16 GCMs are shown in Figure 5.

It can be seen that for precipitation, the best-
ranking GCMs were HadGEM3-GC31-LL, ACCESS-
CM2, CanESM5, NESM3 and CanESM5-CanOE; 
while MIROC6, ACCESS-ESM1-5, MIROC-ES2L, 
CanESM5 and CanESM5-CanOE were ranked best 
in terms of modeled maximum temperature. Whereas 
for minimum temperature, CNRM-CM6-1, CNRM-
ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 were 
ranked top.
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Figure 3: Taylor diagrams represent the correlation between the corresponding observations to (a) GCM precipitation, 
(b) GCM maximum temperature, and (c) GCM minimum temperature.

(a) Precipitation (b) Maximum temperature

(c) Minimum temperature

Conclusions

This study assessed the performances of 16 selected 
GCMs of the CMIP6 suite for their modeling 
performance of precipitation, maximum temperature, 
and minimum temperature over the VMD using five 
statistical indicators, NRMSE, PBIAS, NSE, R2, and 

VE, and supplemented by PDF plots and TD for 
the period 1980–2014. The results highlight that the 
different statistical indicators reveal different ranking 
orders for all 16 GCMs. Based on RS ranking, it can be 
seen that each simulation GCM performed differently 
on the differing metrics, and no single model performed 
best on all metrics.
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Figure 4: PDF comparison between mean monthly 
observation and (a) GCMs precipitation, (b) GCMs 
maximum temperature, and (c) GCMs minimum 

temperature.

(a) GCMs precipitation

(b) GCMs maximum temperature

(c) GCMs minimum temperature

Figure 5: Final ranking of the 16 selected GCMs based 
on TS results.

The top five highest ranked GCMs-based on TS 
were HadGEM3-GC31-LL, ACCESS-CM2, CanESM5, 
NESM3 and CanESM5-CanOE for precipitation; 
and CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, 
NESM3 and INM-CM5-0 for the maximum; and 
CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, 
NESM3 and INM-CM5-0 for minimum temperatures. 
It is also observed that generally there was an 
underestimation of precipitation and an overestimation 
of temperature. The TS method demonstrated efficiency 
to aggregate a multi-model ensemble GCMs based on 
the different statistical indicators which were often 
contradictory.

The findings from this study provide an understanding 
and insights into the understanding of future climate 
variability for the VMD based on CMIP6. Accurate 
data on future climate change from GCMs are a very 
important tool in not only assessing risks but also 
addressing future climate resilience. Going forward, the 
findings from this study provide useful information for 
the selection of GCMs for the VMD in particular since 
the simulation of precipitation values in tropical areas is 
complex due to both temporal and spatial characteristics.
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