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Abstract: Climate models help us simulate and predict how the Earth’s climate is going to change in the future. 
Wind speed data is critical for developing and validating such models. However, in the real world, often owing to 
many factors such as station maintenance and sensor failures, a considerable amount of wind data goes missing. 
The Generative Adversarial Network (GAN) has been used to impute missing wind data, but the handling of 
unrealistic GAN output has remained largely unstudied. In this paper, we propose a novel hybrid approach that 
combines both the GAN and dual annealing algorithms to not only impute missing wind speed data but also 
counter unrealistic GAN outcomes. The hourly mean wind data has been collected from the National Centers 
for Environmental Information for four Indian stations, viz. Ahmedabad, Indore, Mangaluru and Mumbai. We 
compared the performance of the proposed approach with those of k-nn, soft imputation, and plain GAN-based 
approaches on mean, variance, standard deviation, kurtosis, skewness, and R-square. We found that our approach 
ranks number one based on the R-square value for all the considered stations. Our model consistently produces 
realistic results, unlike plain GAN. We observed that Mumbai has the lowest percentage of missing data (13.14%) 
and the highest R-square value (0.9999186451). However, Indore has the highest percentage of missing data 
(46.6463%) and the lowest R-square value (0.9046885604).

Keywords: Climate modelling; Wind speed data; Imputation; Generative adversarial network; Dual annealing 
algorithm.

Introduction

Climate models are crucial tools for comprehending 
and anticipating climate change (Reichle, 2023). Wind 
speed data is a key input for these models (Lakku & 
Behera, 2022), but it can have some missing values, 
due to various factors, such as station maintenance 
and sensor failures (Boomgard-Zagrodnik & Brown, 
2022). This can introduce uncertainty into the models 
and lead to inaccurate estimations of regional climate 
change (Yao et al., 2023), aquatic ecosystem (Duvall et 
al., 2022), sea surface temperature (Wills et al., 2022), 

sea level pressure (O’Reilly et al., 2021), atmospheric 
circulation (Stevens & Bony, 2013), wind gusts (Cheng 
et al., 2014), rain and storms (Voosen, 2020). Estimation 
of extreme climate events (Outten & Sobolowski, 2021), 
such as cyclones (Xi et al., 2023) and their impact on 
society, also get downgraded because of missing wind 
data (Schewe et al., 2019). The accuracy of climate 
models, to predict impacts of climate change on wind 
energy also gets hampered (Doddy Clarke et al., 2022). 
Hence, in recent years imputing missing wind data has 
gained traction, as shown in Table 1.
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Table 1: Summary of the literature published on wind data imputation since 2018

Study Method explored for imputation Geographical location considered

(Sareen et al., 2023) k-nearest neighbor (k-nn) Bhogat, Chandori, Charanka, Gandhi Nagar, Surat

(Kosana et al., 2022) Generative Adversarial Network (GAN) Idalia, Bend

(Silei et al., 2023) Matrix Completion Process based on 
Singular Value Thresholding (SVT) 
method

Kedros

(Jha et al., 2022) Deterministic Approach based on optimal 
value of speed-power constant

Arizona, Utah, Colorado

(Jing et al., 2022) Improved Context Encoder network Hunan

(Qu et al., 2020) Combination of GAN and Travelling 
Salesman Problem (TSP)

A North Chinese wind farm (the authors did not 
mention anything more about the location)

(Afrifa‐Yamoah et al., 2020) Structural Time Series Model with 
Kalman smoothing,
Autoregressive Integrated Moving 
Average (ARIMA) with Kalman 
smoothing,
Multiple Regression Modelling

Esperance, Perth, Learmonth, Broome

(Tawn et al., 2020) Inverse Probability Weighting,
Mean Imputation (MI),
Multiple Imputation using Markov Chain 
Monte Carlo method

10 wind farms located in the UK, 30 others located 
in other parts of Europe (the authors did not 
mention anything more about the location)

(Liao et al., 2022) Context Encoder,
Auto-Encoder,
K-Means,
k-nn,
Back Propagation Neural Network,
Cubic Interpolation,
Conditional GAN

National Wind Technology Center (NWTC), Cape 
May, Butler Grade, Bovina, Megler, Cochran

(T. Liu et al., 2018) Multiple Imputation using Mixture 
Model and Expectation–Maximization 
algorithm,
Deletion Method,
MI,
k-nn

Jiangsu province

(Özen & Deniz, 2022) CatBoost model Urla wind power plant

(Ayiah-Mensah et al., 2021) Multiple Imputation using Multivariate 
Imputation with Chain Equations (MICE)

Brest

(Ammar & Xydis, 2023) Last observation carried forward (LOCF),
MI

Tejona, Nørrekær Enge, Jade wind park, 
Wind Turbine in Turkey (the authors did not 
mention anything more about the location of the 
station from Turkey)

(Faybishenko et al., 2022) Seasonally Decomposed Missing Value 
Imputation

East River Watershed (Colorado), Barro Colorado 
Island

(Ben et al., 2020) Linear Regression Tsetang, Lhasa, Nyêmo
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In Table 1, the heuristic methods such as the deletion 
method simply delete the missing values, which may 
lead to bias in the analysis (Donner, 1982). Another 
heuristic method LOCF, replaces any missing value 
with the last observed value (Hamer & Simpson, 2009). 
LOCF is based on the assumption that the result of the 
analysis is unaffected by the missing data, which in the 
context of wind appears improbable, as wind flow is 
highly stochastic (Kayalvizhi & Kumar, 2018).

Statistical methods such as MI substitute all the 
missing values with the mean of the observed values. 
While it increases the sample size, it does not add 
any information (Malhotra, 1987). Another popular 
statistical method to impute missing data is Multiple 
Imputation. It imputes the missing data with multiple 
plausible values while preserving the natural variation 
and probability distribution of the existing values 
(Kang, 2013). It imputes the missing value of one 
variable, multiple times, till a satisfactory value has been 
obtained, with reference to the existing data for other 
variables. This very fact reduces its usability in imputing 
missing wind data because the whole weather station, 
which records other meteorological parameters too, may 
stop recording data briefly for different reasons (Yassen 
& Abdul Kareem, 2023). Besides, this method is very 
slow (Burgette & Reiter, 2010) and computationally 
expensive (Junger & Ponce de Leon, 2015), as it first 
creates multiple datasets with plausible values for the 
missing data points. Then each of these datasets is 
statistically analysed, and a final data set is created 
based on this analysis. 

Another statistical missing data imputation method 
is Inverse Probability Weighting. In this method, the 
probability of missing data is first determined based 
on the observed data. The inverse of this probability is 
then used as the weight. These weights are then used 
in imputing missing values that are adjusted to account 
for the missingness and maintain the underlying patterns 
in the observed data. However, one major drawback of 
this method is that it is very sensitive to the assumptions 
of the model used to estimate the probabilities (Sun 
& Tchetgen Tchetgen, 2018). A little deviation in the 
assumptions may lead to biased imputations.

Linear regression is a simple technique to impute the 
missing data statistically. Though it has been found to 
work well in imputing missing wind speed data (Ben 
et al., 2020), it has not been applied to impute missing 
wind direction data yet. This may be attributed to 
the fact that wind direction is nonlinear (Farrugia & 
Micallef, 2006) and linear regression performs poorly 
in such cases (Bertsimas et al., 2017).

Cubic interpolation is another simple statistical 
method for imputing missing data. It imputes the 
missing data, by fitting the available data points with 
a third-degree polynomial. It is preferred when the 
imputed values do not vary wildly (Liu et al., 2020). 
This very fact renders it ineffective in imputing missing 
wind data, as atmospheric wind is highly stochastic in 
nature.

The seasonal decomposition technique is another 
statistical method that has recently gained a lot of 
popularity in imputing missing wind data. In this 
method, the wind data is first decomposed into three 
components: the trend, the seasonal component, and the 
residual/noise component. Each of these components is 
then individually imputed, and the imputed components 
are combined to obtain the final values. One major 
problem with this approach is that it may fail to 
effectively capture outliers (Battaglia et al., 2020) due 
to the complex seasonal pattern of wind (Charakopoulos 
et al., 2019). Similarly, the CatBoost model, which 
is a hybrid of Gradient Boosting and Decision Trees 
algorithms (Prokhorenkova et al., 2018), also requires 
the elimination of outliers, before fitting the wind data 
(Özen & Deniz, 2022). Whereas, considering outliers 
in wind data is critical for ensuring the safe operation 
of wind farms (Ye et al., 2016). 

Multiple Regression Model, which imputes missing 
wind speed based on other meteorological parameters, 
has been found to outperform hybrid methods that 
combine the Kalman filter with the Autoregressive 
Integrated Moving Average (ARIMA) method and 
Structural Time Series Model (Afrifa‐Yamoah et al., 
2020). However, the major problem with this type of 
regression model is that the weather station may stop 
recording all the meteorological parameters randomly 
owing to sudden disruption in power supply and 
telecommunication network (Park & Baek, 2023).

The mathematical method for matrix completion like 
Singular Value Thresholding (SVT) Algorithm has also 
been used for imputing missing values of wind speed 
(Silei et al., 2023). SVT is an iterative process, which 
continues till satisfactory singular values are obtained 
for a low rank matrix, which is similar to the observed 
data (Cai et al., 2010). However, this method doesn’t 
perform well, if a large amount of data goes missing 
(Tan et al., 2015).

Neural Networks, like Back Propagation Neural 
Network (BPNN), Generative Adversarial Network 
(GAN), Context Encoder (CE) and Auto Encoder (AE) 
have also been tested in imputing missing wind data. 
Neural networks are data-driven models. In any neural 
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network, there are layers of artificial neurons, which 
are interconnected with each other. During training, 
the information is passed between the input and output 
neural layers, through intermediate connected layer(s). 
The difference between the actual value and the output 
of the network is the error. In BPNN, this error is 
propagated backward through the network. The weights 
of the network are then adjusted iteratively, using the 
gradient descent method, till the error is minimised to 
an acceptable level (Rumelhart et al., 1986). 

GAN is a combination of two neural networks: 
Generator and Discriminator. These two networks pit 
each other. The Generator network tries to produce 
synthetic data, which tries to mimic actual observation. 
Whereas, the Discriminator model tries to distinguish 
the synthetic data from the actual data (Goodfellow 
et al., 2014). When the synthetic data becomes 
indistinguishable from the actual data, then we can say 
that the model has been properly trained and can now 
be used for imputing the missing data. However, if 
the Discriminator becomes too good at identifying the 
synthetic data, then the Generator won’t learn anything 
meaningful, and the GAN will produce meaningless 
output. This is a very common problem with GAN and 
is known as the vanishing gradient problem (Brophy 
et al., 2023).

Auto-Encoder is a kind of neural network, which 
consists of two neural networks: Encoder and Decoder. 
Unlike GAN, where two neural networks pit each other, 
here they work together. The observed wind data is 
first fed to the Encoder, which compresses the data and 
stores it in a latent space, called ‘code’. The Decoder 
then takes this code and tries to reconstruct the original 
data, by decompressing it (Goodfellow et al., 2016). If 
the Decoder could reconstruct the data properly, then 
the Autoencoder is said to have captured the salient 
features of the data and learned from its compressed 
representation, else the whole combination needs to be 
retrained. Once the desired level of accuracy has been 
achieved, then the missing wind data may be imputed 
using Autoencoders.

Context-Encoder is another type of neural network, 
which consists of three parts: Encoder, Context Decoder 
and a Discriminator. The observed wind data is first 
fed to the Encoder network, which compresses the data 
and stores it in a latent space. That compressed data 
is then taken by the Context Decoder and the original 
data is then reconstructed, but this time, with an added 
constraint of considering the context of the data, such as 
its Probability Distribution Function. The performance 
of the Context Decoder is evaluated by the Discriminator 

Network. This network tries to discriminate between 
the actual and generated data (Liao et al., 2022). If the 
discriminator cannot distinguish between the generated 
and the actual data, then the network may be said to 
be properly trained and then the model may be used to 
impute missing wind data. 

However, the performance of Auto-Encoder, Context 
Encoder and GAN, in imputing missing wind speed and 
direction data, have been found to be similar (Liao et 
al., 2022).

Unlike complex and computationally intensive neural 
networks (Han et al., 2015), k-nn is a very simple data-
driven imputation model (Shataee et al., 2012). In the 
k-nn imputation model, the missing data are imputed 
by taking the average of the k nearest neighbouring 
values of the missing value (Batista & Monard, 2002). 
This simple method has been successful in accurately 
imputing missing wind speed data in several places in 
India (Sareen et al., 2023). Whereas in places, which 
are in other countries, k-nn seems to perform poorly in 
imputing missing wind data (Liao et al., 2022; T. Liu 
et al., 2018).

From Table 1, we observed that there is no single 
universally acceptable imputation method for wind data. 
This may be attributed to the fact that the behaviour 
of wind changes from one place to another (Gugliani, 
2020). Furthermore, we also observed that most of the 
published works focus on imputing missing wind speed 
data, while the research on the imputation of missing 
wind direction data is limited.

In this paper, we initially studied the performance 
of k-nn, Soft Imputing (SI), and GAN in four Indian 
stations for imputing missing wind speed data using 
Mean, Variance, Standard Deviation, kurtosis, skewness, 
and R-square values. Then we proposed a novel method 
that is a combination of GAN and the Dual Annealing 
Algorithm.

Geographical Conditions and Observation Period
In the present study, hourly wind speed (in m/s) has been 
collected from the National Centers for Environmental 
Information (NCEI) (Data Search | National Centers for 
Environmental Information (NCEI), n.d.). The period of 
study is from January 1, 2017, at 12:00 AM to January 
1, 2023, at 12:00 AM. The data are collected at a height 
of 10 m above ground level, in the vicinity of airports, to 
ensure that the wind flow is unhindered by local terrain 
or any other obstruction (Gugliani, 2020). In this paper, 
we considered four Indian stations, viz. Ahmedabad, 
Indore, Mangaluru and Mumbai. 

The latitude, longitude, elevation relative to mean 
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sea level, total number of observations and percentage 
of missing wind data, for each of the stations are 
summarized in Table 2. In Table 2, the column “Total 
Number of Observation” represents the number of 
observations that passed all the quality checks by the 
issuing agency (FEDERAL CLIMATE COMPLEX, n.d.). 

From Table 2, we see that the stations considered in 
the study are spread across different regions in India 
and the percentage of missing wind data varies with 
them. During the study period, apart from Mumbai, 
the percentage of missing data at all other places was 
more than 20%. Indore reports the highest percentage 
of missing data (46.6464 %), whereas Mumbai reports 
the lowest percentage of missing data (13.2015 %).

The places are chosen strategically so that the 
performance of the methods can be evaluated in coastal 
as well as inland regions. Coastal cities, Mangaluru and 
Mumbai, along the Arabian Sea, have been chosen as 
they experience strong and consistent wind from the sea 
(Kumar et al., 2002). The coastal cities spread from the 
western to the southern parts of India.

The inland cities of Ahmedabad and Indore are more 
diverse in their terrain. Ahmedabad is a dry, sandy and 
mostly flat region (Makwana & Gandhi, n.d.). On the 
other hand, Indore is a semi-arid region in the Malwa 
plateau in the central part of India (Pandey, n.d.). All 
the considered stations, be it coastal or inland, vary in 
elevation with respect to the mean sea level.

Mathematical Analysis

k-Nearest Neighbour (k-nn) Imputation Method
Mathematical expression for k-nn imputation, adopted 
from (Sareen et al., 2023), is shown in Equation 1.

	   missing value = i i
i

i

C W
W∑

Where k is the number of neighbour points, i is the 
number of the considered neighbour, ci is the value of 
the considered neighbour and wi is the reciprocal of 
the distance between the considered neighbour and the 
missing value. 

The mathematical expression for calculating wi, is 
also adopted from (Sareen et al., 2023), and is shown 
in Equation 2.

	 wi =	
1

id
In Equation 2, di represents the Euclidian distance 

between the missing value and the considered 
neighbour. In this study, the square root of the sample 
size of the dataset has been chosen as the k-value which 
is considered optimal for such studies (Sareen et al., 
2023; Troyanskaya et al., 2001).

Soft Imputing (SI) 
Soft Imputing is a matrix completion technique that 
iteratively generates a lower-rank imputed matrix while 
minimizing the Frobenius norm difference from the 
original. It achieves so iteratively, by minimizing the 
following objective function:

2
*FX M M− + λ

In Equation 3, X is the original matrix containing the 
observed values of Wind Speed and Flow Direction, M 
is the imputed matrix, ||M||* is the nuclear norm of M, 
and l is the regularization parameter. The above form 
is adopted from (Mazumder et al., n.d.). 

In this paper, the value of l is determined 
automatically, for each location, by the Python library 
‘fancy impute 0.7.0’ (Feldman, n.d.).

Generative Adversarial Network (GAN) 
GAN was first proposed in 2014 (Goodfellow et al., 
2014). Since then, it has taken the AI community 
by storm. So much so that, the artwork “Portrait of 
Edmond de Belamy”, created using GAN was sold for 
$ 432,000.00 (Jones, 2018), which is considered to be a 
milestone event in the history of evolution of Artificial 
Intelligence (Epstein et al., 2020).

GAN operates by pitting two neural networks against 
each other. The two competing neural networks are 
Generator and Discriminator. 

Table 2: Summary of data considered in the study collected from NCEI

Station Latitude
(°)

Longitude
(°)

Elevation relative 
to mean sea level (m)

Total number of 
observation

Percentage of 
missing data

Ahmedabad 23.0772 72.6346 57.6000 41305 21.4510
Indore 22.7218 75.8011 563.8800 28056 46.6464
Mangaluru 12.9613 74.8901 102.7100 39263 25.3342
Mumbai 19.0887 72.8679 11.2700 45643 13.2015
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The generator network creates fake data, mimicking 
the actual data. Discriminator network tries to distinguish 
between the fake data and the actual data. When the 
fake and the actual data become indistinguishable from 
the Discriminator, then we say that the GAN model 
has been properly trained. The trained model is then 
deployed to create more synthetic data.

The generator tries to fool the Discriminator network, 
into believing that the fake data it produced, is in fact 
the real ones by minimising the loss function as shown 
in Equation 4. The discriminator network tries to 
identify the fake data by minimising the loss function 
as shown in Equation 5.

    	Generatorloss = 
1
log( ( )( )))

n

i
D G mi

=
∑ 	 (4)

	Discriminatorloss = 
1
(log ( ( )) log(1 ( ( ))))

n

i
i

D x D G mi
=

+ −∑ 		
			  (5)

In Equation 4 and Equation 5, n is the number 
of data points where the values of Wind Speed are 
missing. mi is the noise input to the model, to prevent 
it from overfitting (Creswell & Bharath, 2019). xi is the 
observed data of Wind Speed at the ith data point. G(mi) 
is the fake Wind Speed data created by the Generator. 
D(xi) is a value between 0 and 1, denoting how well the 
discriminator thinks that xi is indeed real. D(G(mi))  is 
also a value between 0 and 1, which denotes how well 
the Discriminator thinks that G(mi) is also real.

Both Equation 4 and Equation 5 are minimized 
iteratively, using the Adam optimiser. Adam is often 
used in training GAN networks, as it is computationally 
efficient in handling large data (Kingma & Ba, 2014). 
Adam is a stochastic-gradient-based optimisation 
algorithm, which adjusts the weights of both Generator 
and Discriminator networks using the following 
equation:

     wnew = wold – lrate ×  t tm V + ε 	 (6)

In Equation 6, the new weight wnew, is calculated 
from the old weight wold. New weights are calculated 
by taking a step along the gradient of the loss function, 
at the current step, mt. The step size is controlled by 
learning rate, lrate. To avoid the model, getting stuck 
in local minima, the velocity term vt is adjusted 
(Shulman, 2023). A small number, e, avoids division by 
0 (Bhandari et al., 2021), which in turn avoids infinite 
learning rate.

GAN – Dual Annealing Algorithm
In this paper, a hybrid approach has been developed, 
which combines both GAN and Dual Annealing 
Algorithm (DA). Initially, GAN is employed to provide 
approximate values for the missing wind data. 

These values are then further optimised to be a 
realistic representation of the wind speed. Optimization 
problems are those problems where objective function(s) 
must be satisfied, to arrive at an optimal solution. In 
addition to satisfying the objective function, if some 
constraints too are to be satisfied, then the problem 
becomes a Constrained Optimization Problem.

In this paper DA, from python library ‘scipy 1.11.2’ 
(Scipy, n.d.), has been adopted. DA is a stochastic 
optimization algorithm (Xiang et al., 1997). It is 
designed to achieve global minima (Silveira et al., 
2022) by combining a simulated annealing algorithm 
with a local search algorithm. The objective functions 
considered in the study are: 

    Minimize |MeanX – MeanM|	 (7)

   Minimize |VarianceX – VarianceM|	 (8)

Minimize |Standard DeviationX –| Standard DeviationM	
			  (9)

While simultaneously solving the objective functions 
Equation 7 to Equation 9, the following constraints too 
are to be satisfied:

    0 ≤ Wind Speed ≤ 90 m/s	 (10)

 The constraint Equation 10 is in accordance with the 
data documentation (FEDERAL CLIMATE COMPLEX, 
n.d.).

Statistical Tools used to Assess the 
Performance of the Approaches

Mean 
Mean of the observed and imputed data are calculated 
using the following formulae:

		 MeanX = 
1

1 N

i
X

N =
∑ 	 (11)

		 MeanM = 
1

1 N

i
M

N =
∑ 	 (12)

In Equation 11, N represents the total number of 
observations.
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Variance 
Variance of the observed and imputed data are calculated 
using the following formulae:

	    VarianceX = 
2

1

1 ( Mean )
N

i X
i

X
N =

−∑ 	 (13)

	    VarianceM = 
2

1

1 ( Mean )
n

i M
i

M
n =

−∑ 	 (14)

Standard Deviation
Standard deviation of the observed and imputed data is 
calculated using the following formulae:

Standard DeviationX = 
2

1

1 ( Mean )
n

i X
i

X
N =

−∑ 	 (15)

Standard DeviationM = 
2

1

1 ( Mean )
n

i M
i

M
n =

−∑ 	 (16)

Kurtosis
Kurtosis of the observed and imputed data are calculated 
using the following formulae:

  KurtosisX = 

4
1

2

1

1 ( Mean )

1 ( Mean )

N
i Xi

N
i Xi

x
N

x
N

=

=

−

 − 
 

∑

∑
– 3	 (17)

 KurtosisM = 

4
1

2

1

1 ( Mean )

1 ( Mean )

n
i Mi

n
i Mi

m
n

m
n

=

=

−

 − 
 

∑

∑
– 3	 (18)

Skewness
Skewness of the observed and imputed data are 
calculated using the following formulae:

  SkewnessX = 

3
1

3
2

1

1 ( Mean )

1 ( Mean )

N
i Xi

N
i Xi

x
N

x
N

=

=

−

 − 
 

∑

∑
	 (19)

 SkewnessM = 

3
1

3
2

1

1 ( Mean )

1 ( Mean )

n
i Mi

n
i Mi

m
n

m
n

=

=

−

 − 
 

∑

∑
	 (20)

R-Square
R-square is nothing but the proportion of variance in 
the independent variable, which can be predicted using 
the dependent variable (Chicco et al., 2021). However, 
in this case, since the matrix M has numerical values 
only in those places where the numbers are missing in 
the X matrix, it becomes difficult to calculate R-square 
directly for the two datasets.

Hence, the R-square value has been calculated based 
on the other statistical parameters, i.e., mean, variance, 
standard deviation, kurtosis, and skewness for the X 
and M matrices, and from that, the conclusion has been 
drawn.

Here the R-square value has been calculated using 
the following formula (Gugliani, 2020):

     R2 = 1 –  
5 2

1
5 2

1

( )

( )
i ii

ii

P FF

P FF
=

=

−

−

∑
∑

	 (21)

In Equation 21, Pi is the cumulative distribution function 
(CDF) of the statistical values for the observed wind 
data. FF  is the mean and Fi is the CDF of the statistical 
values for the imputed wind data.

Results and Discussion

Table 3 summarises the results of the statistical 
investigation of wind speed imputation for all four 
stations and methods considered in the study. In Table 
3 and Figures 1 to 4, the original data is the observed 
data with missing values.

From Table 3 and Figures 1 to 4, we found that the 
k-nn imputation method is best at capturing the central 
tendency of the original data, as it has the same mean as 
the original data. However, the difference in the values 
of the other considered parameters indicates that the 
method fails miserably in capturing the variation and 
shape of the original distribution. This method works 
in the same manner everywhere, regardless of location.

For Ahmedabad, Mangaluru, and Mumbai, the 
SI imputation method captures neither the central 
tendency nor the variation and shape of the original 
distribution, as shown by the variation in the values 
of the considered parameters between the original 
and imputed distributions. However, for Indore, 
which has the highest percentage of missing data, the 
method could successfully capture the shape of the 
original distribution, as shown by the least variation in 
kurtosis, skewness between the original and imputed 
distributions. But, even there, it could not capture any 
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Figure 1: Box plot of wind speed distribution in 
Mangaluru.

Figure 2: Box plot of wind speed distribution in Indore.

Figure 3: Box plot of wind speed distribution in 
Manguluru.

Figure 4: Box plot of wind speed distribution in 
Mumbai.

other attribute of the original distribution. Hence, we 
conclude that this method is the least suitable of all the 
considered methods to impute missing wind speed data 
for the considered stations.

Plain GAN, though not the best imputation method, 
could capture the central tendency, variation and shape 
of the original distribution to a fair degree of accuracy, 
which is indicated by high values of R-square, for all the 
places considered in the study. However, for Indore and 
Ahmedabad, it did generate unrealistic wind speed data 
(negative), as shown in Table 4, in certain instances. As 
such, this method is not suitable for imputing missing 
wind speed data.

To tackle this problem of GAN, we propose a hybrid 
approach. We take the output of plain GAN as input 

for a constrained optimisation problem. The constraint 
in Equation 10 ensures that the generated values are 
all within the accepted range. Though the objective 
function of the optimisation problem is just to minimise 
the difference between mean, variance, and standard 
deviation values between the original and the imputed 
distribution, the method does successfully capture the 
shape of the original distribution, as shown by the least 
variation for skewness and kurtosis, in Table 3. From 
Table 4, we can confirm that in instances where plain 
GAN was producing unrealistic results, our method 
could predict values that satisfy all the conditions of 
the data.

Subsequently, our method scores the highest R-square 
value, irrespective of the location of the station, and 
hence can be considered the best performing method 
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for imputing missing wind speed data among all the 
considered methods in the four locations considered 
in the study.

Conclusions

Climate models are crucial tools for understanding and 
predicting climate change. Wind speed data are a key 
input for these models, but it can be missing due to 
various factors. This can introduce uncertainty into the 
models and lead to inaccurate estimations. Hence, in 
recent years, imputing missing wind data has gained 
traction.

This paper proposes a hybrid approach that uses 
both the GAN and dual annealing algorithms to impute 
missing wind speed data and counter unrealistic GAN 
results. We evaluated the performance of our approach 
against those of k-nn, Soft Imputation, and plain GAN-
based methods on mean, variance, standard deviation, 
kurtosis, skewness, and R-square.

The hourly mean wind data for four Indian locations, 
viz. Ahmedabad, Indore, Mangaluru, and Mumbai, were 
obtained from the National Centers for Environmental 
Information. The study’s observation period runs from 
January 1, 2017, at 12:00 AM through January 1, 2023 
at 12:00 AM. The data are gathered at a height of 10 
metres above ground level near airports to verify that 
the wind flow is not obstructed by local terrain or any 
other impediment.

Our results showed that our approach ranks number 
one based on the R-square value for all the considered 
stations. Our model consistently produces realistic 
results, unlike plain GAN. The hybrid approach is 
also able to capture the central tendency and spread 
of the data about the mean and shape of the original 
distribution.

Overall, our hybrid approach is a promising method 
for imputing missing wind speed data. It can produce 
realistic and accurate results, even when the percentage 
of missing data is high.

Future work could explore the application of our 
hybrid approach to impute missing wind speed data for 
other regions and time periods. Additionally, we could 
investigate other machine-learning methods to improve 
the performance of our approach.
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