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Abstract: Climate models help us simulate and predict how the Earth’s climate is going to change in the future.
Wind speed data is critical for developing and validating such models. However, in the real world, often owing to
many factors such as station maintenance and sensor failures, a considerable amount of wind data goes missing.
The Generative Adversarial Network (GAN) has been used to impute missing wind data, but the handling of
unrealistic GAN output has remained largely unstudied. In this paper, we propose a novel hybrid approach that
combines both the GAN and dual annealing algorithms to not only impute missing wind speed data but also
counter unrealistic GAN outcomes. The hourly mean wind data has been collected from the National Centers
for Environmental Information for four Indian stations, viz. Ahmedabad, Indore, Mangaluru and Mumbai. We
compared the performance of the proposed approach with those of k-nn, soft imputation, and plain GAN-based
approaches on mean, variance, standard deviation, kurtosis, skewness, and R-square. We found that our approach
ranks number one based on the R-square value for all the considered stations. Our model consistently produces
realistic results, unlike plain GAN. We observed that Mumbai has the lowest percentage of missing data (13.14%)
and the highest R-square value (0.9999186451). However, Indore has the highest percentage of missing data
(46.6463%) and the lowest R-square value (0.9046885604).

Keywords: Climate modelling; Wind speed data; Imputation; Generative adversarial network; Dual annealing
algorithm.

Introduction

Climate models are crucial tools for comprehending
and anticipating climate change (Reichle, 2023). Wind
speed data is a key input for these models (Lakku &
Behera, 2022), but it can have some missing values,
due to various factors, such as station maintenance
and sensor failures (Boomgard-Zagrodnik & Brown,
2022). This can introduce uncertainty into the models
and lead to inaccurate estimations of regional climate
change (Yao et al., 2023), aquatic ecosystem (Duvall et
al., 2022), sea surface temperature (Wills et al., 2022),
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sea level pressure (O’Reilly et al., 2021), atmospheric
circulation (Stevens & Bony, 2013), wind gusts (Cheng
et al., 2014), rain and storms (Voosen, 2020). Estimation
of extreme climate events (Outten & Sobolowski, 2021),
such as cyclones (Xi et al., 2023) and their impact on
society, also get downgraded because of missing wind
data (Schewe et al., 2019). The accuracy of climate
models, to predict impacts of climate change on wind
energy also gets hampered (Doddy Clarke et al., 2022).
Hence, in recent years imputing missing wind data has
gained traction, as shown in Table 1.
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Table 1: Summary of the literature published on wind data imputation since 2018

Study

Method explored for imputation

Geographical location considered

(Sareen et al., 2023)
(Kosana et al., 2022)
(Silei et al., 2023)

(Jha et al., 2022)

(Jing et al., 2022)
(Qu et al., 2020)

(Afrifa-Yamoah et al., 2020)

(Tawn et al., 2020)

(Liao et al., 2022)

(T. Liu et al., 2018)

(Ozen & Deniz, 2022)
(Ayiah-Mensah et al., 2021)

(Ammar & Xydis, 2023)

(Faybishenko et al., 2022)

(Ben et al., 2020)

k-nearest neighbor (k-nn)
Generative Adversarial Network (GAN)

Matrix Completion Process based on
Singular Value Thresholding (SVT)
method

Deterministic Approach based on optimal
value of speed-power constant

Improved Context Encoder network

Combination of GAN and Travelling
Salesman Problem (TSP)

Structural Time Series Model with
Kalman smoothing,

Autoregressive Integrated Moving
Average (ARIMA) with Kalman
smoothing,

Multiple Regression Modelling

Inverse Probability Weighting,

Mean Imputation (MI),

Multiple Imputation using Markov Chain
Monte Carlo method

Context Encoder,

Auto-Encoder,

K-Means,

k-nn,

Back Propagation Neural Network,
Cubic Interpolation,

Conditional GAN

Multiple Imputation using Mixture
Model and Expectation—Maximization
algorithm,

Deletion Method,

MI,

k-nn

CatBoost model

Multiple Imputation using Multivariate
Imputation with Chain Equations (MICE)

Last observation carried forward (LOCF),
MI

Seasonally Decomposed Missing Value
Imputation

Linear Regression

Bhogat, Chandori, Charanka, Gandhi Nagar, Surat
Idalia, Bend
Kedros

Arizona, Utah, Colorado

Hunan

A North Chinese wind farm (the authors did not
mention anything more about the location)

Esperance, Perth, Learmonth, Broome

10 wind farms located in the UK, 30 others located
in other parts of Europe (the authors did not
mention anything more about the location)

National Wind Technology Center (NWTC), Cape
May, Butler Grade, Bovina, Megler, Cochran

Jiangsu province

Urla wind power plant

Brest

Tejona, Nerrekar Enge, Jade wind park,

Wind Turbine in Turkey (the authors did not
mention anything more about the location of the
station from Turkey)

East River Watershed (Colorado), Barro Colorado
Island

Tsetang, Lhasa, Nyémo
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In Table 1, the heuristic methods such as the deletion
method simply delete the missing values, which may
lead to bias in the analysis (Donner, 1982). Another
heuristic method LOCF, replaces any missing value
with the last observed value (Hamer & Simpson, 2009).
LOCEF is based on the assumption that the result of the
analysis is unaffected by the missing data, which in the
context of wind appears improbable, as wind flow is
highly stochastic (Kayalvizhi & Kumar, 2018).

Statistical methods such as MI substitute all the
missing values with the mean of the observed values.
While it increases the sample size, it does not add
any information (Malhotra, 1987). Another popular
statistical method to impute missing data is Multiple
Imputation. It imputes the missing data with multiple
plausible values while preserving the natural variation
and probability distribution of the existing values
(Kang, 2013). It imputes the missing value of one
variable, multiple times, till a satisfactory value has been
obtained, with reference to the existing data for other
variables. This very fact reduces its usability in imputing
missing wind data because the whole weather station,
which records other meteorological parameters too, may
stop recording data briefly for different reasons (Yassen
& Abdul Kareem, 2023). Besides, this method is very
slow (Burgette & Reiter, 2010) and computationally
expensive (Junger & Ponce de Leon, 2015), as it first
creates multiple datasets with plausible values for the
missing data points. Then each of these datasets is
statistically analysed, and a final data set is created
based on this analysis.

Another statistical missing data imputation method
is Inverse Probability Weighting. In this method, the
probability of missing data is first determined based
on the observed data. The inverse of this probability is
then used as the weight. These weights are then used
in imputing missing values that are adjusted to account
for the missingness and maintain the underlying patterns
in the observed data. However, one major drawback of
this method is that it is very sensitive to the assumptions
of the model used to estimate the probabilities (Sun
& Tchetgen Tchetgen, 2018). A little deviation in the
assumptions may lead to biased imputations.

Linear regression is a simple technique to impute the
missing data statistically. Though it has been found to
work well in imputing missing wind speed data (Ben
et al., 2020), it has not been applied to impute missing
wind direction data yet. This may be attributed to
the fact that wind direction is nonlinear (Farrugia &
Micallef, 2006) and linear regression performs poorly
in such cases (Bertsimas et al., 2017).

Cubic interpolation is another simple statistical
method for imputing missing data. It imputes the
missing data, by fitting the available data points with
a third-degree polynomial. It is preferred when the
imputed values do not vary wildly (Liu et al., 2020).
This very fact renders it ineffective in imputing missing
wind data, as atmospheric wind is highly stochastic in
nature.

The seasonal decomposition technique is another
statistical method that has recently gained a lot of
popularity in imputing missing wind data. In this
method, the wind data is first decomposed into three
components: the trend, the seasonal component, and the
residual/noise component. Each of these components is
then individually imputed, and the imputed components
are combined to obtain the final values. One major
problem with this approach is that it may fail to
effectively capture outliers (Battaglia et al., 2020) due
to the complex seasonal pattern of wind (Charakopoulos
et al., 2019). Similarly, the CatBoost model, which
is a hybrid of Gradient Boosting and Decision Trees
algorithms (Prokhorenkova et al., 2018), also requires
the elimination of outliers, before fitting the wind data
(Ozen & Deniz, 2022). Whereas, considering outliers
in wind data is critical for ensuring the safe operation
of wind farms (Ye et al., 2016).

Multiple Regression Model, which imputes missing
wind speed based on other meteorological parameters,
has been found to outperform hybrid methods that
combine the Kalman filter with the Autoregressive
Integrated Moving Average (ARIMA) method and
Structural Time Series Model (Afrifa-Yamoah et al.,
2020). However, the major problem with this type of
regression model is that the weather station may stop
recording all the meteorological parameters randomly
owing to sudden disruption in power supply and
telecommunication network (Park & Bacek, 2023).

The mathematical method for matrix completion like
Singular Value Thresholding (SVT) Algorithm has also
been used for imputing missing values of wind speed
(Silei et al., 2023). SVT is an iterative process, which
continues till satisfactory singular values are obtained
for a low rank matrix, which is similar to the observed
data (Cai et al., 2010). However, this method doesn’t
perform well, if a large amount of data goes missing
(Tan et al., 2015).

Neural Networks, like Back Propagation Neural
Network (BPNN), Generative Adversarial Network
(GAN), Context Encoder (CE) and Auto Encoder (AE)
have also been tested in imputing missing wind data.
Neural networks are data-driven models. In any neural
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network, there are layers of artificial neurons, which
are interconnected with each other. During training,
the information is passed between the input and output
neural layers, through intermediate connected layer(s).
The difference between the actual value and the output
of the network is the error. In BPNN, this error is
propagated backward through the network. The weights
of the network are then adjusted iteratively, using the
gradient descent method, till the error is minimised to
an acceptable level (Rumelhart et al., 1986).

GAN is a combination of two neural networks:
Generator and Discriminator. These two networks pit
each other. The Generator network tries to produce
synthetic data, which tries to mimic actual observation.
Whereas, the Discriminator model tries to distinguish
the synthetic data from the actual data (Goodfellow
et al., 2014). When the synthetic data becomes
indistinguishable from the actual data, then we can say
that the model has been properly trained and can now
be used for imputing the missing data. However, if
the Discriminator becomes too good at identifying the
synthetic data, then the Generator won’t learn anything
meaningful, and the GAN will produce meaningless
output. This is a very common problem with GAN and
is known as the vanishing gradient problem (Brophy
et al., 2023).

Auto-Encoder is a kind of neural network, which
consists of two neural networks: Encoder and Decoder.
Unlike GAN, where two neural networks pit each other,
here they work together. The observed wind data is
first fed to the Encoder, which compresses the data and
stores it in a latent space, called ‘code’. The Decoder
then takes this code and tries to reconstruct the original
data, by decompressing it (Goodfellow et al., 2016). If
the Decoder could reconstruct the data properly, then
the Autoencoder is said to have captured the salient
features of the data and learned from its compressed
representation, else the whole combination needs to be
retrained. Once the desired level of accuracy has been
achieved, then the missing wind data may be imputed
using Autoencoders.

Context-Encoder is another type of neural network,
which consists of three parts: Encoder, Context Decoder
and a Discriminator. The observed wind data is first
fed to the Encoder network, which compresses the data
and stores it in a latent space. That compressed data
is then taken by the Context Decoder and the original
data is then reconstructed, but this time, with an added
constraint of considering the context of the data, such as
its Probability Distribution Function. The performance
of the Context Decoder is evaluated by the Discriminator

Network. This network tries to discriminate between
the actual and generated data (Liao et al., 2022). If the
discriminator cannot distinguish between the generated
and the actual data, then the network may be said to
be properly trained and then the model may be used to
impute missing wind data.

However, the performance of Auto-Encoder, Context
Encoder and GAN, in imputing missing wind speed and
direction data, have been found to be similar (Liao et
al., 2022).

Unlike complex and computationally intensive neural
networks (Han et al., 2015), k-nn is a very simple data-
driven imputation model (Shataee et al., 2012). In the
k-nn imputation model, the missing data are imputed
by taking the average of the k nearest neighbouring
values of the missing value (Batista & Monard, 2002).
This simple method has been successful in accurately
imputing missing wind speed data in several places in
India (Sareen et al., 2023). Whereas in places, which
are in other countries, k-nn seems to perform poorly in
imputing missing wind data (Liao et al., 2022; T. Liu
et al., 2018).

From Table 1, we observed that there is no single
universally acceptable imputation method for wind data.
This may be attributed to the fact that the behaviour
of wind changes from one place to another (Gugliani,
2020). Furthermore, we also observed that most of the
published works focus on imputing missing wind speed
data, while the research on the imputation of missing
wind direction data is limited.

In this paper, we initially studied the performance
of k-nn, Soft Imputing (SI), and GAN in four Indian
stations for imputing missing wind speed data using
Mean, Variance, Standard Deviation, kurtosis, skewness,
and R-square values. Then we proposed a novel method
that is a combination of GAN and the Dual Annealing
Algorithm.

Geographical Conditions and Observation Period
In the present study, hourly wind speed (in m/s) has been
collected from the National Centers for Environmental
Information (NCEI) (Data Search | National Centers for
Environmental Information (NCEI), n.d.). The period of
study is from January 1, 2017, at 12:00 AM to January
1, 2023, at 12:00 AM. The data are collected at a height
of 10 m above ground level, in the vicinity of airports, to
ensure that the wind flow is unhindered by local terrain
or any other obstruction (Gugliani, 2020). In this paper,
we considered four Indian stations, viz. Ahmedabad,
Indore, Mangaluru and Mumbai.

The latitude, longitude, elevation relative to mean
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sea level, total number of observations and percentage
of missing wind data, for each of the stations are
summarized in Table 2. In Table 2, the column “Total
Number of Observation” represents the number of
observations that passed all the quality checks by the
issuing agency (FEDERAL CLIMATE COMPLEX, n.d.).

From Table 2, we see that the stations considered in
the study are spread across different regions in India
and the percentage of missing wind data varies with
them. During the study period, apart from Mumbai,
the percentage of missing data at all other places was
more than 20%. Indore reports the highest percentage
of missing data (46.6464 %), whereas Mumbai reports
the lowest percentage of missing data (13.2015 %).

The places are chosen strategically so that the
performance of the methods can be evaluated in coastal
as well as inland regions. Coastal cities, Mangaluru and
Mumbai, along the Arabian Sea, have been chosen as
they experience strong and consistent wind from the sea
(Kumar et al., 2002). The coastal cities spread from the
western to the southern parts of India.

The inland cities of Ahmedabad and Indore are more
diverse in their terrain. Ahmedabad is a dry, sandy and
mostly flat region (Makwana & Gandhi, n.d.). On the
other hand, Indore is a semi-arid region in the Malwa
plateau in the central part of India (Pandey, n.d.). All
the considered stations, be it coastal or inland, vary in
elevation with respect to the mean sea level.

Mathematical Analysis

k-Nearest Neighbour (k-nn) Imputation Method
Mathematical expression for k-nn imputation, adopted
from (Sareen et al., 2023), is shown in Equation 1.
i val W
missing value = 2_; W
Where k is the number of neighbour points, 7 is the
number of the considered neighbour, ¢, is the value of
the considered neighbour and w; is the reciprocal of
the distance between the considered neighbour and the
missing value.

The mathematical expression for calculating w,, is
also adopted from (Sareen et al., 2023), and is shown
in Equation 2.

1
Wi dl.

In Equation 2, d, represents the Euclidian distance
between the missing value and the considered
neighbour. In this study, the square root of the sample
size of the dataset has been chosen as the k-value which
is considered optimal for such studies (Sareen et al.,
2023; Troyanskaya et al., 2001).

Soft Imputing (SI)

Soft Imputing is a matrix completion technique that
iteratively generates a lower-rank imputed matrix while
minimizing the Frobenius norm difference from the
original. It achieves so iteratively, by minimizing the
following objective function:

e A

%

In Equation 3, X is the original matrix containing the
observed values of Wind Speed and Flow Direction, M
is the imputed matrix, ||M||. is the nuclear norm of M,
and A is the regularization parameter. The above form
is adopted from (Mazumder et al., n.d.).

In this paper, the value of A is determined
automatically, for each location, by the Python library
‘fancy impute 0.7.0’ (Feldman, n.d.).

Generative Adversarial Network (GAN)
GAN was first proposed in 2014 (Goodfellow et al.,
2014). Since then, it has taken the Al community
by storm. So much so that, the artwork “Portrait of
Edmond de Belamy”, created using GAN was sold for
$ 432,000.00 (Jones, 2018), which is considered to be a
milestone event in the history of evolution of Artificial
Intelligence (Epstein et al., 2020).

GAN operates by pitting two neural networks against
each other. The two competing neural networks are
Generator and Discriminator.

Table 2: Summary of data considered in the study collected from NCEI

Station Latitude Longitude Elevation relative Total number of Percentage of
(°) (°) to mean sea level (m) observation missing data
Ahmedabad 23.0772 72.6346 57.6000 41305 21.4510
Indore 22.7218 75.8011 563.8800 28056 46.6464
Mangaluru 12.9613 74.8901 102.7100 39263 25.3342
Mumbai 19.0887 72.8679 11.2700 45643 13.2015
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The generator network creates fake data, mimicking
the actual data. Discriminator network tries to distinguish
between the fake data and the actual data. When the
fake and the actual data become indistinguishable from
the Discriminator, then we say that the GAN model
has been properly trained. The trained model is then
deployed to create more synthetic data.

The generator tries to fool the Discriminator network,
into believing that the fake data it produced, is in fact
the real ones by minimising the loss function as shown
in Equation 4. The discriminator network tries to
identify the fake data by minimising the loss function
as shown in Equation 5.

glog(D(G)(mi))) 4)

Generator, =

3" (log (D(x,) + log(1 - DG(mi))
5)

In Equation 4 and Equation 5, n is the number
of data points where the values of Wind Speed are
missing. m, is the noise input to the model, to prevent
it from overfitting (Creswell & Bharath, 2019). x;, is the
observed data of Wind Speed at the /™ data point. G(m,)
is the fake Wind Speed data created by the Generator.
D(x,) is a value between 0 and 1, denoting how well the
discriminator thinks that x; is indeed real. D(G(m,)) is
also a value between 0 and 1, which denotes how well
the Discriminator thinks that G(m,) is also real.

Both Equation 4 and Equation 5 are minimized
iteratively, using the Adam optimiser. Adam is often
used in training GAN networks, as it is computationally
efficient in handling large data (Kingma & Ba, 2014).
Adam is a stochastic-gradient-based optimisation
algorithm, which adjusts the weights of both Generator
and Discriminator networks using the following

equation:
x my / \/7 +& (6)

In Equation 6, the new weight w, ., is calculated
from the old weight w ;. New weights are calculated
by taking a step along the gradient of the loss function,
at the current step, m,. The step size is controlled by
learning rate, /.. To avoid the model, getting stuck
in local minima, the velocity term v, is adjusted
(Shulman, 2023). A small number, €, avoids division by
0 (Bhandari et al., 2021), which in turn avoids infinite
learning rate.

Discriminator, . =

Whew — Wold — rate

GAN - Dual Annealing Algorithm

In this paper, a hybrid approach has been developed,
which combines both GAN and Dual Annealing
Algorithm (DA). Initially, GAN is employed to provide
approximate values for the missing wind data.

These values are then further optimised to be a
realistic representation of the wind speed. Optimization
problems are those problems where objective function(s)
must be satisfied, to arrive at an optimal solution. In
addition to satisfying the objective function, if some
constraints too are to be satisfied, then the problem
becomes a Constrained Optimization Problem.

In this paper DA, from python library ‘scipy 1.11.2°
(Scipy, n.d.), has been adopted. DA is a stochastic
optimization algorithm (Xiang et al., 1997). It is
designed to achieve global minima (Silveira et al.,
2022) by combining a simulated annealing algorithm
with a local search algorithm. The objective functions
considered in the study are:

Minimize [Mean, — Mean, | (7

Minimize |Variance, — Variance,,| (8)

Minimize |Standard Deviation, —| Standard Deviation,,
©)
While simultaneously solving the objective functions

Equation 7 to Equation 9, the following constraints too
are to be satisfied:

0 < Wind Speed < 90 m/s (10)

The constraint Equation 10 is in accordance with the
data documentation (FEDERAL CLIMATE COMPLEX,
n.d.).

Statistical Tools used to Assess the
Performance of the Approaches

Mean
Mean of the observed and imputed data are calculated
using the following formulae:

1 N

Mean, = NZ (11)
1 N

Mean,, = WZM (12)

In Equation 11, N represents the total number of
observations.
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Variance
Variance of the observed and imputed data are calculated
using the following formulae:
: 1 2
Variance, = NZ(Xi —Mean y) (13)

i=l

1 n
Variance,, = —Z(M ; —Mean , )*
n

i=l1

(14)

Standard Deviation
Standard deviation of the observed and imputed data is
calculated using the following formulae:

i=1

1 n
Standard Deviation,, = \/ N Z (X; —Mean )2 (15)

Standard Deviation,, = \/ lz (M; —Mean,, )?
i=1

(16)

Kurtosis
Kurtosis of the observed and imputed data are calculated
using the following formulae:

1 N
N Zl_:l (x; —Mean y )4

Kurtosis, = | -3 (17
N
(NZI_:] (x; —MeanX)j
1 <n 4
—Zizl(mi —Mean,, )
Kurtosis,, = L -3 (18)

2
(rlz Z; (m; —Mean,, )j

Skewness
Skewness of the observed and imputed data are
calculated using the following formulae:

I o~
N Zizl (x; —Mean )’
Skewness, = 3

[]1] zl]\il (x; — Meanx)j2

(19)

1
— E ! (m; —Mean,, )’
n—'"=

Skewness,, = 3

(,11 Z; (m; —Mean,, ))2

(20)

R-Square

R-square is nothing but the proportion of variance in
the independent variable, which can be predicted using
the dependent variable (Chicco et al., 2021). However,
in this case, since the matrix M has numerical values
only in those places where the numbers are missing in
the X matrix, it becomes difficult to calculate R-square
directly for the two datasets.

Hence, the R-square value has been calculated based
on the other statistical parameters, i.e., mean, variance,
standard deviation, kurtosis, and skewness for the X
and M matrices, and from that, the conclusion has been
drawn.

Here the R-square value has been calculated using
the following formula (Gugliani, 2020):

> (B-FF)

R =1- =& —
2B~ FF)

21

In Equation 21, P, is the cumulative distribution function
(CDF) of the statistical values for the observed wind

data. FF is the mean and F is the CDF of the statistical
values for the imputed wind data.

Results and Discussion

Table 3 summarises the results of the statistical
investigation of wind speed imputation for all four
stations and methods considered in the study. In Table
3 and Figures 1 to 4, the original data is the observed
data with missing values.

From Table 3 and Figures 1 to 4, we found that the
k-nn imputation method is best at capturing the central
tendency of the original data, as it has the same mean as
the original data. However, the difference in the values
of the other considered parameters indicates that the
method fails miserably in capturing the variation and
shape of the original distribution. This method works
in the same manner everywhere, regardless of location.

For Ahmedabad, Mangaluru, and Mumbai, the
SI imputation method captures neither the central
tendency nor the variation and shape of the original
distribution, as shown by the variation in the values
of the considered parameters between the original
and imputed distributions. However, for Indore,
which has the highest percentage of missing data, the
method could successfully capture the shape of the
original distribution, as shown by the least variation in
kurtosis, skewness between the original and imputed
distributions. But, even there, it could not capture any
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Figure 1: Box plot of wind speed distribution in
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Figure 3: Box plot of wind speed distribution in
Manguluru.

other attribute of the original distribution. Hence, we
conclude that this method is the least suitable of all the
considered methods to impute missing wind speed data
for the considered stations.

Plain GAN, though not the best imputation method,
could capture the central tendency, variation and shape
of the original distribution to a fair degree of accuracy,
which is indicated by high values of R-square, for all the
places considered in the study. However, for Indore and
Ahmedabad, it did generate unrealistic wind speed data
(negative), as shown in Table 4, in certain instances. As
such, this method is not suitable for imputing missing
wind speed data.

To tackle this problem of GAN, we propose a hybrid
approach. We take the output of plain GAN as input
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Figure 2: Box plot of wind speed distribution in Indore.
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Figure 4: Box plot of wind speed distribution in
Mumbai.

for a constrained optimisation problem. The constraint
in Equation 10 ensures that the generated values are
all within the accepted range. Though the objective
function of the optimisation problem is just to minimise
the difference between mean, variance, and standard
deviation values between the original and the imputed
distribution, the method does successfully capture the
shape of the original distribution, as shown by the least
variation for skewness and kurtosis, in Table 3. From
Table 4, we can confirm that in instances where plain
GAN was producing unrealistic results, our method
could predict values that satisfy all the conditions of
the data.

Subsequently, our method scores the highest R-square
value, irrespective of the location of the station, and
hence can be considered the best performing method
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for imputing missing wind speed data among all the
considered methods in the four locations considered
in the study.

Conclusions

Climate models are crucial tools for understanding and
predicting climate change. Wind speed data are a key
input for these models, but it can be missing due to
various factors. This can introduce uncertainty into the
models and lead to inaccurate estimations. Hence, in
recent years, imputing missing wind data has gained
traction.

This paper proposes a hybrid approach that uses
both the GAN and dual annealing algorithms to impute
missing wind speed data and counter unrealistic GAN
results. We evaluated the performance of our approach
against those of k-nn, Soft Imputation, and plain GAN-
based methods on mean, variance, standard deviation,
kurtosis, skewness, and R-square.

The hourly mean wind data for four Indian locations,
viz. Ahmedabad, Indore, Mangaluru, and Mumbai, were
obtained from the National Centers for Environmental
Information. The study’s observation period runs from
January 1, 2017, at 12:00 AM through January 1, 2023
at 12:00 AM. The data are gathered at a height of 10
metres above ground level near airports to verify that
the wind flow is not obstructed by local terrain or any
other impediment.

Our results showed that our approach ranks number
one based on the R-square value for all the considered
stations. Our model consistently produces realistic
results, unlike plain GAN. The hybrid approach is
also able to capture the central tendency and spread
of the data about the mean and shape of the original
distribution.

Overall, our hybrid approach is a promising method
for imputing missing wind speed data. It can produce
realistic and accurate results, even when the percentage
of missing data is high.

Future work could explore the application of our
hybrid approach to impute missing wind speed data for
other regions and time periods. Additionally, we could
investigate other machine-learning methods to improve
the performance of our approach.
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