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Abstract: This study utilises a comprehensive, multi-layered approach to assess flooding susceptibility in a
specific area, integrating diverse environmental datasets such as JRC Global Surface Water, Landsat 8 images, and
SRTM elevation data. Employing the GEE FMA, a powerful tool leveraging Google Earth Engine capabilities,
the analysis covers water occurrence, permanent water, elevation, distance to water, topographic hazard score, and
vegetation indices (NDVI and NDWI). The Water Occurrence layer establishes a foundational understanding of
water-body distribution’s correlation with flood vulnerability, while Permanent Water refines this understanding.
Distance to Water measures proximity for targeted risk evaluation, and Elevation identifies vulnerable regions
based on topography. The GEE FMA synthesises these layers into a Flood Hazard Susceptibility map, categorising
vulnerability into Very Low, Low, Medium, High, and Very High. This nuanced understanding is crucial for
prioritising interventions. The GEE FMA'’s rapid processing speed makes it an invaluable tool for short-term
decision support in flood hazard disaster management, offering insights for informed decision-making and resilient
infrastructure development. The Topographic Hazard Score provides information on how topography influences
flood risk, while the Wetness Hazard Score categorises moisture conditions for identifying flood-prone locations.
Decision-makers rely on these values for quick and precise flood susceptibility assessments. In an era of climate
uncertainties and urbanisation, the GEE FMA emerges as a reliable tool for decision-making, mitigating flood
impacts, and developing effective flood risk management strategies.

Keywords: Flood hazard assessment; Google earth engine; Multi-layered analysis; Decision support system;
Disaster management.

Introduction damage. Numerous things, such as intense rain, storm

surges, river overflow, or quick snowmelt, might cause

Floods pose a severe threat to the world as a common  these occurrences. Beyond just physically damaging
natural disaster since they can potentially do significant  infrastructure, floods can affect communities, upend
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ecosystems, and frequently have long-term negative
social and economic repercussions (Perera et al.,
2019; Podlaha et al., 2018). Because of the effects of
urbanisation, flood risk is increased in metropolitan
areas. Cities that expand quickly change the way land
is used add more impervious surfaces and disrupt
natural drainage patterns. Due to these changes, urban
areas are more vulnerable to flooding, which calls for
a sophisticated strategy to manage the risks involved
(IFRC, n.d.).

Flood susceptibility is increased because roads
and structures, which were before permeable, are
now impervious due to urbanisation. Because of this
modification, the land’s inherent ability to absorb
precipitation is diminished, increasing flow during
periods of heavy rainfall. Metropolitan areas are more
vulnerable to floods due to the concentration of people
and valuable goods (Coumou and Rahmstorf, 2012,
Werner, 2004). This can lead to severe economic
and social consequences. Effective risk management
necessitates a thorough understanding of the intricate
interplay of environmental, societal, and infrastructure
elements contributing to urban flood risk(Di Baldassarre
et al.,, 2009). An essential first step in lessening the
effects of floods is to analyse the flood risk. This entails
thoroughly examining variables such as geography,
rainfall patterns, land use, river morphology, and
protective infrastructure. These complex dynamics
present particular difficulties for risk management and
disaster resilience in the urban setting (Preistnall et
al., 2000; Galland et al., 1991). Inadequate flood risk
evaluation in urban areas can lead to adverse health
effects, population displacement, economic losses, and
disruption of vital services. It is, therefore, essential
to approach flood risk assessment from a holistic and
multidisciplinary perspective (Sinha et al., 1998).

In-depth approaches to assessing flood risk are
essential for tackling the complex issues that urban
floods present. These techniques incorporate several
characteristics and use cutting-edge technologies for
modeling, mapping, and analysing flood-prone areas
(Wing et al., 2018). It takes a multidisciplinary approach
involving knowledge of hydrology, meteorology,
geospatial analysis, and risk modeling to comprehend
the complexity of urban flood risk fully. The creative
use of Google Earth Engine (GEE) for integrated danger
mapping is helpful in this context (McLearn 2019;
Institute of Catastrophic Loss Reduction, 2019). The
comprehensive evaluation of flood dangers in urban
settings is made possible by the effective processing of
large-scale geospatial data, which is made possible by

GEE’s capabilities. This strategy offers decision-makers
and stakeholders in disaster management and urban
planning meaningful insights to improve resilience in
urban flood concerns (Perera et al., 2000).

Recent studies on urban floods and flood risk
assessment have greatly improved our knowledge of
these intricate processes. Recent research has strongly
emphasised figuring out the complex effects of
climate change on flood patterns (Lewis et al., 2016).
To improve the predictive accuracy of assessments,
especially in urban areas, researchers have emphasised
how vital it is to incorporate predicted fluctuations in
precipitation and extreme weather events into flood
risk models (Bhola et al., 2020; Allen et al., 2018).
This focus on changes brought about by climate change
emphasises how dynamic flood threats are and how vital
adaptive approaches are.

In recent studies, the influence of urbanisation in
increasing flood susceptibility has been thoroughly
examined. Scholars have examined the complex
relationships between land-use changes and urbanisation
and how they affect regional hydrology (Mustafa
and Szydtowski, 2021). These findings emphasise
the significance of comprehending the dynamics of
urbanization and its influence on flood risks. These
kinds of insights are essential for developing practical
flood mitigation methods in rapidly urbanising areas,
where striking a careful balance between infrastructural
expansion and environmental resilience is critical (Attari
and Hosseini, 2019).

Technological advancements and the development
of geospatial analysis tools have brought about a
new era for flood risk assessment approaches. To
improve the accuracy of flood hazard mapping, recent
research examines the combination of cutting-edge
technology such as machine learning methods, high-
resolution modelling, and remote sensing data (Chang
et al., 2018). By combining a variety of datasets and
enhancing the spatial resolution of hazard mapping, this
method expands the scope of flood risk assessments.
It offers a more thorough grasp of the nuances of
urban flood risk (Pal and Singha, 2021). These
technological advancements could completely transform
the effectiveness and precision of flood risk assessments
in urban settings.

In recent flood risk assessment studies, Google
Earth Engine (GEE) has become a critical platform that
provides researchers with a powerful tool for processing
and analysing large-scale geospatial data. GEE’s ability
to smoothly integrate a variety of datasets, including
topography data, hydro-environmental indices, and
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satellite imagery, has been proven by recent field
applications (Yusoff et al., 2021). This integration
demonstrates how GEE can improve and expedite flood
risk assessment procedures by enabling the creation of
precise and current flood hazard maps. The technology
is positioned to revolutionise flood risk assessment
because it can effectively manage large datasets (Jain
et al., 2016).

The aim of this study is to improve flood risk
assessment by integrating geospatial analysis, Google
Earth Engine, and the latest technological advancements.
Our primary objective is to understand the dynamics of
urban flood risk and evaluate the efficiency of GEE in
streamlining the flood risk assessment process (Amin
et al., 2018). We aspire to provide valuable insights to
stakeholders and decision-makers in urban planning
and crisis management. Our study strives to bridge
the gap between conventional and modern approaches
to develop more efficient and resilient methods for
managing and reducing the impact of urban floods
(Tena et al., 2019).

Materials and Methods

Study Area

The Jaipur District, situated in the western part of India
in the state of Rajasthan, spans an area of 11,143 square
kilometers, which accounts for about 3.23% of the total
area of the state. Nestled between the latitudes 26°25° N
and 27°51° N and the longitudes 74° 55’ E and 76° 15’
E, this district is home to Jaipur, the state capital, also
fondly known as the Pink City. The district is situated
in the foothills of the Aravali range, bordered by hills
in the north and east, and expansive plains in the west
and south. The district stretches approximately 180
kilometers from east to west and about 110 kilometres
from north to south.

Jaipur District is surrounded by various districts and
a state: Nagaur District to the northwest, Sikar District
to the north, the state of Haryana to the far northeast,
Tonk District to the south, SawaiMadhopur District to
the southeast, Ajmer District to the west, and Alwar and
Dausa districts to the east.

As per the 2011 census, the district has a population
of 6,626,178, resulting in a population density of about
598 per square kilometre, or 1,550 per square mile. The
intricate tapestry of Jaipur District’s geographical layout
provides a unique environmental and sociocultural
context that shapes the patterns and impacts of natural
disasters such as floods. right bank. It passes through
Fatehabad, Modhapur, and Bharatpur and ends at

Yamuna. Jamwa Ramgarh dam has been built across
the river in Jaipur’s periphery. The variation of height
from sea level at different locations of the district is
122 to 431 m. Figure 1 shows the location map of the
study area.
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Figure 1: Location map of study area.

Methodology

Water Occurrence Layer

This layer provides a detailed representation of the
distribution of water bodies worldwide, using data
from remote sensing to map the location and size of
water features such as rivers, lakes, and reservoirs.
It is generated from the JRC Global Surface Water
dataset and establishes a baseline understanding of the
geographical distribution of water. This knowledge is
crucial for flood risk assessment, as the existence and
size of water bodies greatly influence an area’s overall
vulnerability to floods. By highlighting areas where the
likelihood of flooding is correlated with the presence of
water features, this layer establishes the foundation for
further investigations (Babaei et al., 2018).

Permanent Water Layer

This layer builds on the Water Occurrence layer and is
primarily concerned with locating bodies of water with
long-lasting features, like rivers, lakes, and reservoirs.
It adds a temporal component to flood risk assessment
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by differentiating between transient and permanent
water features. Identifying regions where flood risk
management methods should be prioritised is easier
by knowing the spatial distribution of permanent
water bodies, which greatly influence the long-term
dynamics of floods (Zeng et al., 2020). This layer
improves the accuracy of flood risk assessment by
isolating these aspects, allowing for a more sophisticated
comprehension of the enduring elements that contribute
to vulnerability.

Distance from Stream

Using a quick distance transform method, this layer
measures how close a location is to a permanent body
of water. This geographical metric is essential for
determining the proximity of permanent water sources
to places that could flood. Higher numbers on the layer’s
distance score gradient indicate sites that are further
away from permanent water bodies. This knowledge
makes prioritization of intervention techniques and the
development of infrastructure possible, which is crucial
for decision-making. It establishes a thorough spatial
hierarchy of flood susceptibility, which successfully
directs the use of resources and risk mitigation measures.

Wetness Hazard Score

One important tool for assessing the moisture content of
the terrain and identifying places that could flood is the
Wetness Hazard Score, which is used in flood hazard
mapping. The Normalised Difference Water Index
(NDWI) in the code, which evaluates the presence of
water by examining reflectance values in the green and
near-infrared spectral bands, is the source of this score
(Katiyar et al., 2021). Based on the determined wetness
conditions, the resulting Wetness Hazard Score divides
the landscape into five levels, from very low to very
high. The layer’s technique takes into account NDWI
measurements and uses a systematic scoring approach
to identify places that have higher moisture content and
are therefore more likely to flood. Since the Wetness
Hazard Score highlights areas with higher water content
that could make flood dangers worse, it plays a critical
role in determining flood susceptibility evaluation.
Furthermore, adding this layer to the overall mapping
of flood hazards, improves the precision of flood risk
assessments, assisting in the efficient formulation of
flood mitigation and management plans. Thus, the
Wetness Hazard Score’s methodological integration
is crucial to comprehending the landscape’s moisture
dynamics and how they affect people’s sensitivity to
flood hazards (Moniruzzaman et al., 2021).

Elevation Layer

This layer provides essential information on the
topographical relief of the research area by utilising
elevation data from the Shuttle Radar Topography
Mission (SRTM). Since low-lying locations are
frequently more vulnerable to flooding during periods
of excessive rainfall or storm activity, elevation is a
major factor influencing flooding. This layer serves
as a fundamental component of flood risk assessment
by helping identify locations susceptible to flooding.
Comprehending the differences in elevation is crucial
for pinpointing areas more vulnerable to flooding and
facilitates thorough mapping of hazards. Because the
Elevation layer considers the topographic context of
the environment, it adds a crucial dimension to the
vulnerability to flooding.

Topographic Position Index (TPI)

Using the elevation data, the Topographic Position Index
(TPI) layer is created, which helps in comprehending
regional topographical variances. TPI values help
describe the topographical context of the terrain,
whether they are positive (signaling ridge features) or
negative (signaling valley features). This layer considers
the impact of topographical factors on possible flood
scenarios, giving flood hazard assessment a more
nuanced perspective. TPI offers essential insights into
how landscape morphology may affect water flow and
buildup, increasing the risk of flooding. A thorough
understanding of the topographic position is necessary
for assessing flood risk.

Topographic Hazard Score

A key component of flood hazard mapping is the
Topographic Hazard Score, which is produced from the
Topographic Position Index (TPI) layer and captures
subtle topographical details that affect flood scenarios.
TPI values highlight the complex link between landscape
morphology and water dynamics and offer vital insights
into regional topographical variations, whether they
are positive (showing ridges) or negative (indicating
valleys) (Meraj et al., 2015). One essential component
of the flood hazard mapping process is the Topographic
Hazard Score, which provides a thorough understanding
of flood risk by taking into account the influence of
topographical elements on hypothetical flood scenarios.
The Google Earth Engine (GEE) code’s effectiveness in
handling and evaluating massive amounts of geospatial
data quickly highlights its capacity to enable a quick and
precise evaluation of topographic factors influencing
flood susceptibility, which helps with well-informed
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decision-making regarding flood mitigation and
management (Bera et al., 2021).

Vegetation Indices (NDVI and NDWI)

The algorithm computes the Normalised Difference
Vegetation Index (NDVI) and the Normalised Difference
Water Index (NDWI) using Landsat 8 images. NDVI
reflects the density of healthy vegetation, which adds to
the vegetation danger score. NDWI emphasises water
content, influencing the wetness hazard score. These
indexes link vegetation health and water content to flood
susceptibility, providing crucial environmental data. The
NDVI provides information on land cover, possible
runoff characteristics, and the health and density of
vegetation. Conversely, NDWI highlights places with
high water content, such as open water bodies and
saturated soils. When taken as a whole, these layers
provide information on the ecological features of the
region, giving flood risk assessment an environmental
framework. Figure 2 shows the Methodology flow chart
used in this study.

51
Results

Flood Influencing Factors

In this study, a comprehensive flood hazard assessment
was conducted using a multi-layered approach,
integrating various environmental parameters to
evaluate the susceptibility of the study area to
flooding. The initial water occurrence layer provided
a foundational understanding of the spatial distribution
of water bodies, emphasising permanent water features
as potential risk factors. The subsequent Distance
from the Permanent Water layer refined this analysis,
pinpointing areas in close proximity to these sources
for targeted risk assessment. Elevation data, coupled
with its hazard score, identified regions at differing
elevations, crucial for understanding inundation
dynamics. The Topographic Position Index (TPI) layer
introduced a topographical perspective, capturing the
influence of terrain on flood vulnerability. Vegetation
indices, including NDVI and NDWI, contributed further
by considering the role of vegetation health and water
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Figure 2: Methodology flow chart.
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content in flood susceptibility. High NDVI values
indicated robust vegetation, potentially mitigating
flood impacts, while NDWI identified areas with
high water content contributing to wetness hazard.
The Flood Hazard layer synthesised scores from
each contributing layer, providing a comprehensive
and quantitative measure of flood susceptibility. This
integrated approach considered diverse environmental
factors, offering a nuanced understanding of the spatial
distribution of flood risk. The statistical amalgamation
of these layers enabled the identification of high-risk
zones, facilitating targeted urban planning and disaster
management efforts. Each layer, from water occurrence
to topography, played a crucial role in the overall flood
hazard score, making this holistic approach invaluable
for informed decision-making and resilient infrastructure
development in flood-prone areas.

Slope Map

In flood modeling, the slope is a significant factor
that directly influences the speed and volume of water
runoff, determining the severity and extent of flooding
within a given region. Locations with steep slopes can
accelerate water flow downhill, thus increasing the risk
of flash floods and erosion. Conversely, flat terrain
often leads to water logging, making low-gradient
slopes more susceptible to flooding than high-gradient
ones. Our study utilised a slope map divided into five
classes of varying degrees. As illustrated in Figure
3, a substantial area of the Jaipur district has a slope
ranging from 0 to 4.08 degrees, implying that the region
predominantly comprises flat terrain. This observation
underscores the importance of considering the slope
when assessing flood susceptibility. Our results affirm
that flood-prone areas are primarily situated in flat
and low-elevation zones, where the potential for rapid
water flow is minimised due to the landscape’s rough
texture. Consequently, the study further emphasises that
understanding the slope dynamics is crucial for flood
modeling and devising effective flood management
strategies.

Permanent Water

Permanent water bodies play a crucial role in
flood risk assessment, serving as a key indicator of
potential inundation areas. In our study, the analysis
of permanent water bodies involved the utilization of
the Global Surface Water dataset shown in Figure 4.
This dataset provides information on the occurrence of
water throughout the year, enabling the identification
of regions with consistent water presence. The
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Figure 3: Slope map.

identification of permanent water bodies is particularly
relevant in flood hazard mapping as they represent areas
prone to recurrent flooding. By employing a threshold
of 80% occurrence, we classified regions with persistent
water presence as permanent water bodies. As illustrated
in the results, these areas are depicted in a distinct blue
palette in Figure 4, emphasising their significance in
the flood hazard landscape. Permanent water bodies
contribute significantly to flood susceptibility, acting as
focal points for potential inundation and influencing the
surrounding terrain’s vulnerability. The delineation of
these water bodies provides valuable insights into areas
with heightened flood risk, guiding the formulation of
targeted mitigation strategies. Moreover, the integration
of permanent water data into the hazard mapping
process enhances the accuracy of flood risk assessments,
allowing for a more comprehensive understanding of
the dynamic interplay between water bodies and the
surrounding landscape. In conclusion, the consideration
of permanent water bodies as a parameter in flood
hazard mapping proves instrumental in identifying
high-risk zones and refining strategies for effective
flood risk management.

Distances to Stream

The distance to stream parameter in our flood hazard
assessment involves evaluating the proximity of a
location to permanent water bodies, indicating the
potential reach of flooding in the surrounding areas
shown in Figure 5. Using the Fast Distance Transform
algorithm, we quantified this distance, with the resulting
map showcasing varying proximity levels in a spectrum
of colours. Areas closer to permanent water bodies are
depicted in warm tones, gradually transitioning to cooler
tones as the distance increases. The significance of the
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Figure 4: Permanent stagnate water.

distance to water parameter lies in its ability to identify
zones at different risk levels based on their proximity
to water bodies. Closer proximity implies a higher
likelihood of flooding, while greater distance suggests
a lower risk. In our hazard mapping, we divided the
distance into five hazard score categories, ranging from
1 (closest) to 5 (farthest). This categorisation aids in
clearly demarcating areas with distinct flood risk levels.
The distance to the water parameter is crucial for flood
hazard assessment as it delineates vulnerable regions
susceptible to inundation. It serves as a foundational
layer for understanding the spatial distribution of flood
risk, enabling stakeholders to prioritise intervention
strategies in areas with higher susceptibility. This
parameter also facilitates a nuanced analysis, allowing
for targeted planning and resource allocation based
on the varying degrees of proximity to water bodies.
Overall, the distance to water parameter enhances the
precision of flood hazard mapping by incorporating the
spatial relationship between permanent water bodies and
the surrounding landscape.

Elevation

Elevation plays a crucial role in flood modelling due
to its significant impact on the water flow during a
flood event. The natural topography of the land directs
water from higher to lower elevations shown in Figure
6. Consequently, areas with lower elevations are at a
higher risk of flood impact, as they are more susceptible
to water inundation. Conversely, areas with higher
elevations are less likely to face the brunt of floods, as
water tends to flow away from such regions. In flood
modelling, data on elevation is leveraged to create digital
elevation models (DEMs), providing a comprehensive
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Figure 5: Distances to stream.

representation of the land surface’s topography. In this
study, we utilised an elevation map divided into five
classes illustrated in Figure 6, computed using Landsat-8
OLI imagery with a resolution of 30 m. This map
helped us understand the distribution of various regional
elevations and their correlation with flood susceptibility.
The findings underscore the importance of considering
elevation in flood modeling and developing flood
management strategies.

Land Use Land Cover (LULC)

Land use/Land cover is considered as one of the most
important influencing factors to identify areas, which
are vulnerable to be inundated by flooding. Land use
impacts some hydrological process components such as
evapotranspiration, infiltration, and runoff generation.
LULC is considered the most important component for
flood susceptibility as it represents the current usage
of the land, its form and nature, and its value relative
to soil stability and infiltration. When it rains in the
region, the rainfall amount that passes in the rivers
depends on the circumstances of the area, landscape,
and LU/LC. Land Covers, such as permanent grassland
or other crops, significantly impact the soil’s capacity
to store water. Rainfall-runoff is far more common
on bare land than it does in regions with a dense
layer of vegetation. Rich vegetation lowers runoff by
delaying rainfall droplets reaching the soil through their
lush vegetation body. Conversely, Settlement areas,
mostly made of impervious surfaces, cause low water
absorption, resulting in higher runoff. The study area’s
land use/land cover map is prepared using a Sentinel-2
10 m resolution from ESRI Land Cover 2022 dataset
downloaded from ESRI ArcGIS (https://livingatlas.
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arcgis.com/landcover/). The generated LU/LC map has
7 classes: Water, Trees, Vegetation, Crops, Built Area,
Bare Ground, and Rangeland. LULC Map is shown in
Figure 7.

Normalised Difference Vegetation Index (NDVI)
Normalised Difference Vegetation Index (NDVI) is
a remote sensing technique used in flood modeling
to estimate vegetation cover and its impact on water
flow. NDVI is a measure of the difference between
the amount of red and near-infrared light reflected by
vegetation, and it is a useful indicator of vegetation
density, health, and productivity.

NDVI = (NIR — RED)/(NIr + RED)

NIR and RED denote the surface reflectance of the
near-infrared and red bands, respectively.

In flood modeling, NDVI data is used to estimate
the vegetation cover and its effect on water infiltration
and runoff. Vegetation plays a crucial role in regulating
the water cycle by intercepting rainfall, enhancing
infiltration, and reducing surface runoff. Therefore, the
amount and density of vegetation cover can significantly
influence the runoff and soil erosion rates in a given
area. By analysing NDVI data, an estimation of the
amount and density of vegetation cover in an area and
how it affects water flow can be generated. For example,
NDVI data can be used to estimate the potential impact
of land use changes on flooding. If an area is converted
from forest to agricultural land, the vegetation cover will
be reduced, which can increase the runoff and erosion
rates. In this research, the NDVI map with five classes
was computed using Landsat-8 OLI imagery with a
resolution of 30 m shown in Figure 8.
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Topographic Position Index (TPI)

The Topographic Position Index (TPI) in the provided
flood hazard mapping code is a crucial layer, revealing
the elevation characteristics of the terrain in relation to
its surroundings. The TPI map, computed by subtracting
the local mean elevation from each pixel’s elevation,
vividly portrays the landscape. Positive values in red
signify elevated areas like hills, while negative values in
blue represent lower regions such as valleys. Areas with
TPI values near zero, depicted in green/white, suggest
relatively flat terrain. In the context of flood hazard
mapping, high positive TPI indicates shown in Figure
9 have potential barriers to floodwater flow, influencing
water accumulation in valleys, while high negative TPI
highlights low-lying areas prone to water accumulation
during floods. Integrating TPI with distance to water and
elevation hazard score provides nuanced insights into
how topographic features influence flood vulnerability.
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Adjustments to the topographic hazard score based on
TPI values enhance the flood hazard map’s accuracy,
creating a comprehensive understanding of how
terrain characteristics contribute to flood susceptibility.
Visualising TPI alongside other hazard layers facilitates
the identification of areas where topography plays a
crucial role in influencing flood risk.

Topographic Hazard Score

The Topographic Hazard Score shown in Figure 10
is a tool used to identify flood hazards by analysing
the topographic features of a region. It is based on
the Topographic Position Index (TPI) layer, which is
classified into five different scores corresponding to
different TPI thresholds. The TPI layer helps identify
the level of topographic influence on flood hazards
by assigning scores to different zones based on their
height and slope. For instance, pixels with TPI values
greater than O are assigned a score of 1, indicating
elevated regions or ridges that can potentially reduce
the risk of flooding. Transitional zones are marked by
TPI values of 2, ranging from 0 to -2. In such zones,
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Figure 9: Topographic position index map.
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scores of 3, 4, and 5 are assigned to TPI intervals -2 to
-4, -4 to -6, and below -6, respectively. These intervals
correspond to increasingly lower heights, indicating dips
or depressions that are more vulnerable to flooding. The
Topographic Hazard Score provides a comprehensive
evaluation of how terrain shape influences flood risk
patterns. By analysing how topographical features
from TPI are translated into a visual representation,
decision-makers can identify locations vulnerable to
water accumulation and elevated flood risk. Decision-
makers need to understand the subtleties of Topographic
Hazard Scores as they offer significant insights into the
topographical aspects that impact flood vulnerability in
a given region. The Google Earth Engine (GEE) code’s
effective translation of these topographic subtleties into
a visual representation helps make it easier to identify
regions at higher risk of flooding, contributing to better
flood hazard mapping and management. Figure 11
illustrates the layout of the code, depicting the spatial
distribution of Topographic Hazard Scores and aiding
in the interpretation of the results.
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Figure 11: GEE code layout for topographic hazard score.
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Wetness Hazard Score

The Wetness Hazard Score—which is produced by the
NDWTI in the flood hazard mapping code—contributes
greatly to the overall evaluation of flood hazards and is
essential in determining the moisture conditions of the
terrain. The NDWI readings are systematically classified
into five categories of moisture hazard for the terrain,
which forms the basis of the score. According to the
findings, locations with high moisture content (value
of 5) are at a higher risk of flooding, whereas areas
with a low moisture danger (values of 4, 3, 2, and 1)
show progressively lower levels. The highest score is
given to locations with NDWI values of more than 0.6,
which highlights areas with significant water content.
Intermediate scores are given to those with NDWI
values between 0.2 and 0.6 and -0.2 and 0.2, which
indicate moderate moisture conditions. Additionally,
regions with NDWI values less than or equal to -0.6
and between -0.6 and -0.2 are given lower ratings,
indicating drier conditions. Higher scores indicate
places that are prone to water accumulation, which
makes them sensitive to flooding when these wetness
hazard scores are correlated with flood susceptibility. On
the other hand, areas with lower moisture content and
lower scores have a decreased chance of flooding. The
Wetness Hazard Score improves the identification and
comprehension of places vulnerable to flooding based on
moisture dynamics by providing important information
to the entire flood hazard mapping approach. In order to
reduce the total danger and impact of flooding events,
targeted measures in regions with heightened wetness
hazard are made possible by this nuanced evaluation,
which is essential for effective flood management.
Figure 12 shows the Wetness Hazard Score Map and
Figure 13 shows GEE layout for Wetness Hazard Score.
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Flood Hazard Susceptibility

The final ‘Flood Hazard’ and ‘Flood Hazard Score’
layers were created by combining the hazard scores
of the many criteria that were taken into account in
the flood hazard susceptibility evaluation. The ‘Flood
Hazard’ layer (see Figure 11) is the result of adding
together the scores for terrain, vegetation, moisture,
elevation, and distance. Every layer adds to the overall
evaluation of the region’s flood danger. As seen in
Figure 12, the ‘Flood Hazard Score’ layer further
refines the assessment by assigning a score to each
of the following five categories: Very Low (Score
1), Low (Score 2), Medium (Score 3), High (Score
4), and Very High (Score 5). A more sophisticated
understanding of flood vulnerability is made possible
by this classification, which supports focused mitigation
and management initiatives. First, the “Distance Hazard
Score” is used to evaluate the vulnerability of an area
to water bodies. A score of 1 denotes low susceptibility,
while a score of 5 indicates great susceptibility. The
“Topographic Hazard Score” takes into account the
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topography of the area; greater positive scores (up to
5) indicate elevated places that may be less susceptible
to flooding, while lower negative values (down to -8)
indicate valleys or depressions that are more vulnerable.
The effect of vegetation on flooding is measured by
the ‘Vegetation Hazard Score’. Denser vegetation is
indicated by higher ratings (up to 5), which can lower
the risk of flooding. The “Wetness Hazard Score”
measures the amount of water in the soil; places that
score higher (up to 5) are considered to be wetter and
more likely to flood. In conclusion, the ‘height Hazard
Score’ takes into account the height of the terrain; higher
values (up to 5) denote lower eclevations and greater
susceptibility. Decision-makers can identify regions
that require flood management measures in order of
priority by using the combined complete assessment of
flood susceptibility provided by the ‘Flood Hazard’ and
‘Flood Hazard Score’ layers. By utilising the synergy
of numerous characteristics, this approach improves
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the flood susceptibility assessment’s accuracy and
applicability. The utilization of Google Earth Engine,
which enables quick processing of satellite data and
effective computation of hazard scores for well-informed
decision-making, adds to the methodology’s efficiency.
Figure 14 shows the Flood Hazard Susceptibility and
Figure 15 shows the GEE code layout for Flood Hazard
Susceptibility.

Discussions

This study used a multi-layered strategy for its thorough
flood hazard assessment, incorporating multiple
environmental parameters to measure how susceptible
the study area was to floods. The Water Occurrence
layer highlighted permanent water features as potential
risk factors and offered a basic grasp of water
distribution worldwide. The next layers—Permanent
Water, Distance to Water, Elevation, and Topographic
Hazard Score—helped to improve this study by taking
into account elements including the topography, terrain
elevation, and the permanence of water bodies as well
as proximity to water (Meraj et al., 2018). By taking
into account the water content in flood vulnerability
and the quality of the vegetation, the incorporation
of vegetation indices (NDVI and NDWI) improved
the assessment even further. The NDWI-derived
Wetness Hazard Score was important in evaluating the
terrain’s moisture characteristics, classifying regions
into five wetness levels. This careful analysis made
a substantial contribution to our understanding of
regions that are more likely to accumulate water and
experience flooding. The flood hazard assessment
gained complexity by taking into account environmental
elements such as land use/cover and topography
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characteristics using TPI, topography Hazard Score, and
Slope Map. This gave rise to a thorough understanding
of susceptibility. The Google Earth Engine (GEE)
code demonstrated exceptional speed in processing
large amounts of geographical data, allowing for the
rapid processing and assessment of different hazard
ratings (Vijay et al., 2007). The code’s quick analysis
of the topography, vegetation, and moisture dynamics
allowed for early decision-making about flood control.
In addition to processing these various environmental
parameters quickly, the GEE code also converted
them into visual representations, which helped
decision-makers pinpoint high-risk areas and create
focused intervention plans. A thorough assessment
of flood vulnerability was produced by combining
the hazard scores from several factors in the section
on flood hazard susceptibility (Vijay et al., 2009). A
comprehensive understanding of spatial distribution
was made possible by the integration of multiple layers,
and a quantitative assessment of vulnerability was
provided by the Flood Hazard Score. The evaluation
was expedited by using GEE in this process, proving
its usefulness in creating decision support systems for
flood risk management. The study offered insights into
the dynamic interaction of several variables in flood
susceptibility and stressed the significance of taking
topography, elevation, vegetation, and water distribution
into account when discussing specific layers. The
GEE code’s effectiveness in managing these intricate
environmental factors emphasises how important it is
for accelerating the procedures involved in making
decisions about urban development and flood control
(Hussain et al., 2018). To sum up, the comprehensive
methodology of the study, in conjunction with the
effective use of GEE, makes a substantial contribution
to flood hazard mapping and decision support systems.
Including a variety of environmental factors improves
the accuracy of flood susceptibility evaluations and
offers insightful information for developing resilient
infrastructure and managing disasters in flood-prone
areas.

Conclusion

Using a variety of environmental factors, this study
has shown the efficacy of a thorough, multi-layered
approach to flood hazard assessment. Water Occurrence,
Permanent Water, Elevation, Distance to Water,
Topographic Hazard Score, Vegetation Indices, and
Wetness Hazard Score have all been integrated to
provide a more complex picture of the geographic

distribution of flood susceptibility. Simplifying the
analysis and decision-making process has been made
possible with the help of Google Earth Engine (GEE).
Its ability to process large amounts of geographic data
efficiently allowed for the quick calculation of hazard
scores, which gave important insights into the dynamics
of moisture, vegetation, and terrain. This efficiency plays
a critical role, especially when it comes to reducing the
time required for disaster response and management.
This study could lead to better-informed decision
support systems for flood risk management, which
could have significant future ramifications. Through the
integration of many environmental parameters, decision-
makers are able to effectively allocate resources,
plan robust infrastructure, and prioritise intervention
options. These systems are more flexible in reacting
to fast-paced and dynamic situations because of the
GEE’s rapid data processing capability. The knowledge
gathered from this study can help with the development
of flood mitigation methods in an era of rapidly rising
urbanization and climatic uncertainty. Faster and more
accurate evaluations are promised by the inclusion of
GEE in future disaster management initiatives, enabling
prompt decision-making to reduce the impact of floods
on vulnerable areas. All things considered, the studies
emphasise how important integrated environmental
modelling and GEE are to improving our ability to
effectively manage and react to floods.
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