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Abstract: This study utilises a comprehensive, multi-layered approach to assess flooding susceptibility in a 
specific area, integrating diverse environmental datasets such as JRC Global Surface Water, Landsat 8 images, and 
SRTM elevation data. Employing the GEE FMA, a powerful tool leveraging Google Earth Engine capabilities, 
the analysis covers water occurrence, permanent water, elevation, distance to water, topographic hazard score, and 
vegetation indices (NDVI and NDWI). The Water Occurrence layer establishes a foundational understanding of 
water-body distribution’s correlation with flood vulnerability, while Permanent Water refines this understanding. 
Distance to Water measures proximity for targeted risk evaluation, and Elevation identifies vulnerable regions 
based on topography. The GEE FMA synthesises these layers into a Flood Hazard Susceptibility map, categorising 
vulnerability into Very Low, Low, Medium, High, and Very High. This nuanced understanding is crucial for 
prioritising interventions. The GEE FMA’s rapid processing speed makes it an invaluable tool for short-term 
decision support in flood hazard disaster management, offering insights for informed decision-making and resilient 
infrastructure development. The Topographic Hazard Score provides information on how topography influences 
flood risk, while the Wetness Hazard Score categorises moisture conditions for identifying flood-prone locations. 
Decision-makers rely on these values for quick and precise flood susceptibility assessments. In an era of climate 
uncertainties and urbanisation, the GEE FMA emerges as a reliable tool for decision-making, mitigating flood 
impacts, and developing effective flood risk management strategies.

Keywords: Flood hazard assessment; Google earth engine; Multi-layered analysis; Decision support system; 
Disaster management.

Introduction

Floods pose a severe threat to the world as a common 
natural disaster since they can potentially do significant 

damage. Numerous things, such as intense rain, storm 
surges, river overflow, or quick snowmelt, might cause 
these occurrences. Beyond just physically damaging 
infrastructure, floods can affect communities, upend 
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ecosystems, and frequently have long-term negative 
social and economic repercussions (Perera et al., 
2019; Podlaha et al., 2018). Because of the effects of 
urbanisation, flood risk is increased in metropolitan 
areas. Cities that expand quickly change the way land 
is used add more impervious surfaces and disrupt 
natural drainage patterns. Due to these changes, urban 
areas are more vulnerable to flooding, which calls for 
a sophisticated strategy to manage the risks involved 
(IFRC, n.d.). 

Flood susceptibility is increased because roads 
and structures, which were before permeable, are 
now impervious due to urbanisation. Because of this 
modification, the land’s inherent ability to absorb 
precipitation is diminished, increasing flow during 
periods of heavy rainfall. Metropolitan areas are more 
vulnerable to floods due to the concentration of people 
and valuable goods (Coumou and Rahmstorf, 2012, 
Werner, 2004). This can lead to severe economic 
and social consequences. Effective risk management 
necessitates a thorough understanding of the intricate 
interplay of environmental, societal, and infrastructure 
elements contributing to urban flood risk(Di Baldassarre 
et al., 2009). An essential first step in lessening the 
effects of floods is to analyse the flood risk. This entails 
thoroughly examining variables such as geography, 
rainfall patterns, land use, river morphology, and 
protective infrastructure. These complex dynamics 
present particular difficulties for risk management and 
disaster resilience in the urban setting (Preistnall et 
al., 2000; Galland et al., 1991). Inadequate flood risk 
evaluation in urban areas can lead to adverse health 
effects, population displacement, economic losses, and 
disruption of vital services. It is, therefore, essential 
to approach flood risk assessment from a holistic and 
multidisciplinary perspective (Sinha et al., 1998). 

In-depth approaches to assessing flood risk are 
essential for tackling the complex issues that urban 
floods present. These techniques incorporate several 
characteristics and use cutting-edge technologies for 
modeling, mapping, and analysing flood-prone areas 
(Wing et al., 2018). It takes a multidisciplinary approach 
involving knowledge of hydrology, meteorology, 
geospatial analysis, and risk modeling to comprehend 
the complexity of urban flood risk fully. The creative 
use of Google Earth Engine (GEE) for integrated danger 
mapping is helpful in this context (McLearn 2019; 
Institute of Catastrophic Loss Reduction, 2019). The 
comprehensive evaluation of flood dangers in urban 
settings is made possible by the effective processing of 
large-scale geospatial data, which is made possible by 

GEE’s capabilities. This strategy offers decision-makers 
and stakeholders in disaster management and urban 
planning meaningful insights to improve resilience in 
urban flood concerns (Perera et al., 2000). 

Recent studies on urban floods and flood risk 
assessment have greatly improved our knowledge of 
these intricate processes. Recent research has strongly 
emphasised figuring out the complex effects of 
climate change on flood patterns (Lewis et al., 2016). 
To improve the predictive accuracy of assessments, 
especially in urban areas, researchers have emphasised 
how vital it is to incorporate predicted fluctuations in 
precipitation and extreme weather events into flood 
risk models (Bhola et al., 2020; Allen et al., 2018). 
This focus on changes brought about by climate change 
emphasises how dynamic flood threats are and how vital 
adaptive approaches are. 

In recent studies, the influence of urbanisation in 
increasing flood susceptibility has been thoroughly 
examined. Scholars have examined the complex 
relationships between land-use changes and urbanisation 
and how they affect regional hydrology (Mustafa 
and Szydłowski, 2021). These findings emphasise 
the significance of comprehending the dynamics of 
urbanization and its influence on flood risks. These 
kinds of insights are essential for developing practical 
flood mitigation methods in rapidly urbanising areas, 
where striking a careful balance between infrastructural 
expansion and environmental resilience is critical (Attari 
and Hosseini, 2019). 

Technological advancements and the development 
of geospatial analysis tools have brought about a 
new era for flood risk assessment approaches. To 
improve the accuracy of flood hazard mapping, recent 
research examines the combination of cutting-edge 
technology such as machine learning methods, high-
resolution modelling, and remote sensing data (Chang 
et al., 2018). By combining a variety of datasets and 
enhancing the spatial resolution of hazard mapping, this 
method expands the scope of flood risk assessments. 
It offers a more thorough grasp of the nuances of 
urban flood risk (Pal and Singha, 2021). These 
technological advancements could completely transform 
the effectiveness and precision of flood risk assessments 
in urban settings. 

In recent flood risk assessment studies, Google 
Earth Engine (GEE) has become a critical platform that 
provides researchers with a powerful tool for processing 
and analysing large-scale geospatial data. GEE’s ability 
to smoothly integrate a variety of datasets, including 
topography data, hydro-environmental indices, and 
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satellite imagery, has been proven by recent field 
applications (Yusoff et al., 2021). This integration 
demonstrates how GEE can improve and expedite flood 
risk assessment procedures by enabling the creation of 
precise and current flood hazard maps. The technology 
is positioned to revolutionise flood risk assessment 
because it can effectively manage large datasets (Jain 
et al., 2016).

The aim of this study is to improve flood risk 
assessment by integrating geospatial analysis, Google 
Earth Engine, and the latest technological advancements. 
Our primary objective is to understand the dynamics of 
urban flood risk and evaluate the efficiency of GEE in 
streamlining the flood risk assessment process (Amin 
et al., 2018). We aspire to provide valuable insights to 
stakeholders and decision-makers in urban planning 
and crisis management. Our study strives to bridge 
the gap between conventional and modern approaches 
to develop more efficient and resilient methods for 
managing and reducing the impact of urban floods 
(Tena et al., 2019).

Materials and Methods

Study Area
The Jaipur District, situated in the western part of India 
in the state of Rajasthan, spans an area of 11,143 square 
kilometers, which accounts for about 3.23% of the total 
area of the state. Nestled between the latitudes 26°25’ N 
and 27°51’ N and the longitudes 74° 55’ E and 76° 15’ 
E, this district is home to Jaipur, the state capital, also 
fondly known as the Pink City. The district is situated 
in the foothills of the Aravali range, bordered by hills 
in the north and east, and expansive plains in the west 
and south. The district stretches approximately 180 
kilometers from east to west and about 110 kilometres 
from north to south.

Jaipur District is surrounded by various districts and 
a state: Nagaur District to the northwest, Sikar District 
to the north, the state of Haryana to the far northeast, 
Tonk District to the south, SawaiMadhopur District to 
the southeast, Ajmer District to the west, and Alwar and 
Dausa districts to the east.

As per the 2011 census, the district has a population 
of 6,626,178, resulting in a population density of about 
598 per square kilometre, or 1,550 per square mile. The 
intricate tapestry of Jaipur District’s geographical layout 
provides a unique environmental and sociocultural 
context that shapes the patterns and impacts of natural 
disasters such as floods. right bank. It passes through 
Fatehabad, Modhapur, and Bharatpur and ends at 

Yamuna. Jamwa Ramgarh dam has been built across 
the river in Jaipur’s periphery. The variation of height 
from sea level at different locations of the district is 
122 to 431 m. Figure 1 shows the location map of the 
study area.

Figure 1: Location map of study area.

Methodology	

Water Occurrence Layer
This layer provides a detailed representation of the 
distribution of water bodies worldwide, using data 
from remote sensing to map the location and size of 
water features such as rivers, lakes, and reservoirs. 
It is generated from the JRC Global Surface Water 
dataset and establishes a baseline understanding of the 
geographical distribution of water. This knowledge is 
crucial for flood risk assessment, as the existence and 
size of water bodies greatly influence an area’s overall 
vulnerability to floods. By highlighting areas where the 
likelihood of flooding is correlated with the presence of 
water features, this layer establishes the foundation for 
further investigations (Babaei et al., 2018).

Permanent Water Layer
This layer builds on the Water Occurrence layer and is 
primarily concerned with locating bodies of water with 
long-lasting features, like rivers, lakes, and reservoirs. 
It adds a temporal component to flood risk assessment 
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by differentiating between transient and permanent 
water features. Identifying regions where flood risk 
management methods should be prioritised is easier 
by knowing the spatial distribution of permanent 
water bodies, which greatly influence the long-term 
dynamics of floods (Zeng et al., 2020). This layer 
improves the accuracy of flood risk assessment by 
isolating these aspects, allowing for a more sophisticated 
comprehension of the enduring elements that contribute 
to vulnerability.

Distance from Stream
Using a quick distance transform method, this layer 
measures how close a location is to a permanent body 
of water. This geographical metric is essential for 
determining the proximity of permanent water sources 
to places that could flood. Higher numbers on the layer’s 
distance score gradient indicate sites that are further 
away from permanent water bodies. This knowledge 
makes prioritization of intervention techniques and the 
development of infrastructure possible, which is crucial 
for decision-making. It establishes a thorough spatial 
hierarchy of flood susceptibility, which successfully 
directs the use of resources and risk mitigation measures.

Wetness Hazard Score
One important tool for assessing the moisture content of 
the terrain and identifying places that could flood is the 
Wetness Hazard Score, which is used in flood hazard 
mapping. The Normalised Difference Water Index 
(NDWI) in the code, which evaluates the presence of 
water by examining reflectance values in the green and 
near-infrared spectral bands, is the source of this score 
(Katiyar et al., 2021). Based on the determined wetness 
conditions, the resulting Wetness Hazard Score divides 
the landscape into five levels, from very low to very 
high. The layer’s technique takes into account NDWI 
measurements and uses a systematic scoring approach 
to identify places that have higher moisture content and 
are therefore more likely to flood. Since the Wetness 
Hazard Score highlights areas with higher water content 
that could make flood dangers worse, it plays a critical 
role in determining flood susceptibility evaluation. 
Furthermore, adding this layer to the overall mapping 
of flood hazards, improves the precision of flood risk 
assessments, assisting in the efficient formulation of 
flood mitigation and management plans. Thus, the 
Wetness Hazard Score’s methodological integration 
is crucial to comprehending the landscape’s moisture 
dynamics and how they affect people’s sensitivity to 
flood hazards (Moniruzzaman et al., 2021).

Elevation Layer
This layer provides essential information on the 
topographical relief of the research area by utilising 
elevation data from the Shuttle Radar Topography 
Mission (SRTM). Since low-lying locations are 
frequently more vulnerable to flooding during periods 
of excessive rainfall or storm activity, elevation is a 
major factor influencing flooding. This layer serves 
as a fundamental component of flood risk assessment 
by helping identify locations susceptible to flooding. 
Comprehending the differences in elevation is crucial 
for pinpointing areas more vulnerable to flooding and 
facilitates thorough mapping of hazards. Because the 
Elevation layer considers the topographic context of 
the environment, it adds a crucial dimension to the 
vulnerability to flooding.

Topographic Position Index (TPI)
Using the elevation data, the Topographic Position Index 
(TPI) layer is created, which helps in comprehending 
regional topographical variances. TPI values help 
describe the topographical context of the terrain, 
whether they are positive (signaling ridge features) or 
negative (signaling valley features). This layer considers 
the impact of topographical factors on possible flood 
scenarios, giving flood hazard assessment a more 
nuanced perspective. TPI offers essential insights into 
how landscape morphology may affect water flow and 
buildup, increasing the risk of flooding. A thorough 
understanding of the topographic position is necessary 
for assessing flood risk.

Topographic Hazard Score
A key component of flood hazard mapping is the 
Topographic Hazard Score, which is produced from the 
Topographic Position Index (TPI) layer and captures 
subtle topographical details that affect flood scenarios. 
TPI values highlight the complex link between landscape 
morphology and water dynamics and offer vital insights 
into regional topographical variations, whether they 
are positive (showing ridges) or negative (indicating 
valleys) (Meraj et al., 2015). One essential component 
of the flood hazard mapping process is the Topographic 
Hazard Score, which provides a thorough understanding 
of flood risk by taking into account the influence of 
topographical elements on hypothetical flood scenarios. 
The Google Earth Engine (GEE) code’s effectiveness in 
handling and evaluating massive amounts of geospatial 
data quickly highlights its capacity to enable a quick and 
precise evaluation of topographic factors influencing 
flood susceptibility, which helps with well-informed 
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decision-making regarding flood mitigation and 
management (Bera et al., 2021).

Vegetation Indices (NDVI and NDWI)
The algorithm computes the Normalised Difference 
Vegetation Index (NDVI) and the Normalised Difference 
Water Index (NDWI) using Landsat 8 images. NDVI 
reflects the density of healthy vegetation, which adds to 
the vegetation danger score. NDWI emphasises water 
content, influencing the wetness hazard score. These 
indexes link vegetation health and water content to flood 
susceptibility, providing crucial environmental data. The 
NDVI provides information on land cover, possible 
runoff characteristics, and the health and density of 
vegetation. Conversely, NDWI highlights places with 
high water content, such as open water bodies and 
saturated soils. When taken as a whole, these layers 
provide information on the ecological features of the 
region, giving flood risk assessment an environmental 
framework. Figure 2 shows the Methodology flow chart 
used in this study.

Results 

Flood Influencing Factors
In this study, a comprehensive flood hazard assessment 
was conducted using a multi-layered approach, 
integrating various environmental parameters to 
evaluate the susceptibility of the study area to 
flooding. The initial water occurrence layer provided 
a foundational understanding of the spatial distribution 
of water bodies, emphasising permanent water features 
as potential risk factors. The subsequent Distance 
from the Permanent Water layer refined this analysis, 
pinpointing areas in close proximity to these sources 
for targeted risk assessment. Elevation data, coupled 
with its hazard score, identified regions at differing 
elevations, crucial for understanding inundation 
dynamics. The Topographic Position Index (TPI) layer 
introduced a topographical perspective, capturing the 
influence of terrain on flood vulnerability. Vegetation 
indices, including NDVI and NDWI, contributed further 
by considering the role of vegetation health and water 

Figure 2: Methodology flow chart.
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content in flood susceptibility. High NDVI values 
indicated robust vegetation, potentially mitigating 
flood impacts, while NDWI identified areas with 
high water content contributing to wetness hazard. 
The Flood Hazard layer synthesised scores from 
each contributing layer, providing a comprehensive 
and quantitative measure of flood susceptibility. This 
integrated approach considered diverse environmental 
factors, offering a nuanced understanding of the spatial 
distribution of flood risk. The statistical amalgamation 
of these layers enabled the identification of high-risk 
zones, facilitating targeted urban planning and disaster 
management efforts. Each layer, from water occurrence 
to topography, played a crucial role in the overall flood 
hazard score, making this holistic approach invaluable 
for informed decision-making and resilient infrastructure 
development in flood-prone areas.

Slope Map
In flood modeling, the slope is a significant factor 
that directly influences the speed and volume of water 
runoff, determining the severity and extent of flooding 
within a given region. Locations with steep slopes can 
accelerate water flow downhill, thus increasing the risk 
of flash floods and erosion. Conversely, flat terrain 
often leads to water logging, making low-gradient 
slopes more susceptible to flooding than high-gradient 
ones. Our study utilised a slope map divided into five 
classes of varying degrees. As illustrated in Figure 
3, a substantial area of the Jaipur district has a slope 
ranging from 0 to 4.08 degrees, implying that the region 
predominantly comprises flat terrain. This observation 
underscores the importance of considering the slope 
when assessing flood susceptibility. Our results affirm 
that flood-prone areas are primarily situated in flat 
and low-elevation zones, where the potential for rapid 
water flow is minimised due to the landscape’s rough 
texture. Consequently, the study further emphasises that 
understanding the slope dynamics is crucial for flood 
modeling and devising effective flood management 
strategies.

Permanent Water
Permanent water bodies play a crucial role in 
flood risk assessment, serving as a key indicator of 
potential inundation areas. In our study, the analysis 
of permanent water bodies involved the utilization of 
the Global Surface Water dataset shown in Figure 4. 
This dataset provides information on the occurrence of 
water throughout the year, enabling the identification 
of regions with consistent water presence. The 

identification of permanent water bodies is particularly 
relevant in flood hazard mapping as they represent areas 
prone to recurrent flooding. By employing a threshold 
of 80% occurrence, we classified regions with persistent 
water presence as permanent water bodies. As illustrated 
in the results, these areas are depicted in a distinct blue 
palette in Figure 4, emphasising their significance in 
the flood hazard landscape. Permanent water bodies 
contribute significantly to flood susceptibility, acting as 
focal points for potential inundation and influencing the 
surrounding terrain’s vulnerability. The delineation of 
these water bodies provides valuable insights into areas 
with heightened flood risk, guiding the formulation of 
targeted mitigation strategies. Moreover, the integration 
of permanent water data into the hazard mapping 
process enhances the accuracy of flood risk assessments, 
allowing for a more comprehensive understanding of 
the dynamic interplay between water bodies and the 
surrounding landscape. In conclusion, the consideration 
of permanent water bodies as a parameter in flood 
hazard mapping proves instrumental in identifying 
high-risk zones and refining strategies for effective 
flood risk management.

Distances to Stream
The distance to stream parameter in our flood hazard 
assessment involves evaluating the proximity of a 
location to permanent water bodies, indicating the 
potential reach of flooding in the surrounding areas 
shown in Figure 5. Using the Fast Distance Transform 
algorithm, we quantified this distance, with the resulting 
map showcasing varying proximity levels in a spectrum 
of colours. Areas closer to permanent water bodies are 
depicted in warm tones, gradually transitioning to cooler 
tones as the distance increases. The significance of the 

Figure 3: Slope map.
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representation of the land surface’s topography. In this 
study, we utilised an elevation map divided into five 
classes illustrated in Figure 6, computed using Landsat-8 
OLI imagery with a resolution of 30 m. This map 
helped us understand the distribution of various regional 
elevations and their correlation with flood susceptibility. 
The findings underscore the importance of considering 
elevation in flood modeling and developing flood 
management strategies.

Land Use Land Cover (LULC)
Land use/Land cover is considered as one of the most 
important influencing factors to identify areas, which 
are vulnerable to be inundated by flooding. Land use 
impacts some hydrological process components such as 
evapotranspiration, infiltration, and runoff generation. 
LULC is considered the most important component for 
flood susceptibility as it represents the current usage 
of the land, its form and nature, and its value relative 
to soil stability and infiltration. When it rains in the 
region, the rainfall amount that passes in the rivers 
depends on the circumstances of the area, landscape, 
and LU/LC. Land Covers, such as permanent grassland 
or other crops, significantly impact the soil’s capacity 
to store water. Rainfall-runoff is far more common 
on bare land than it does in regions with a dense 
layer of vegetation. Rich vegetation lowers runoff by 
delaying rainfall droplets reaching the soil through their 
lush vegetation body. Conversely, Settlement areas, 
mostly made of impervious surfaces, cause low water 
absorption, resulting in higher runoff. The study area’s 
land use/land cover map is prepared using a Sentinel-2 
10 m resolution from ESRI Land Cover 2022 dataset 
downloaded from ESRI ArcGIS (https://livingatlas.

Figure 4: Permanent stagnate water. Figure 5: Distances to stream.

distance to water parameter lies in its ability to identify 
zones at different risk levels based on their proximity 
to water bodies. Closer proximity implies a higher 
likelihood of flooding, while greater distance suggests 
a lower risk. In our hazard mapping, we divided the 
distance into five hazard score categories, ranging from 
1 (closest) to 5 (farthest). This categorisation aids in 
clearly demarcating areas with distinct flood risk levels. 
The distance to the water parameter is crucial for flood 
hazard assessment as it delineates vulnerable regions 
susceptible to inundation. It serves as a foundational 
layer for understanding the spatial distribution of flood 
risk, enabling stakeholders to prioritise intervention 
strategies in areas with higher susceptibility. This 
parameter also facilitates a nuanced analysis, allowing 
for targeted planning and resource allocation based 
on the varying degrees of proximity to water bodies. 
Overall, the distance to water parameter enhances the 
precision of flood hazard mapping by incorporating the 
spatial relationship between permanent water bodies and 
the surrounding landscape.

Elevation
Elevation plays a crucial role in flood modelling due 
to its significant impact on the water flow during a 
flood event. The natural topography of the land directs 
water from higher to lower elevations shown in Figure 
6. Consequently, areas with lower elevations are at a 
higher risk of flood impact, as they are more susceptible 
to water inundation. Conversely, areas with higher 
elevations are less likely to face the brunt of floods, as 
water tends to flow away from such regions. In flood 
modelling, data on elevation is leveraged to create digital 
elevation models (DEMs), providing a comprehensive 
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Figure 6: Elevation map.

arcgis.com/landcover/). The generated LU/LC map has 
7 classes: Water, Trees, Vegetation, Crops, Built Area, 
Bare Ground, and Rangeland. LULC Map is shown in 
Figure 7.

Normalised Difference Vegetation Index (NDVI)
Normalised Difference Vegetation Index (NDVI) is 
a remote sensing technique used in flood modeling 
to estimate vegetation cover and its impact on water 
flow. NDVI is a measure of the difference between 
the amount of red and near-infrared light reflected by 
vegetation, and it is a useful indicator of vegetation 
density, health, and productivity.

	 NDVI =	(NIR – RED)/(NIr + RED)

NIR and RED denote the surface reflectance of the 
near-infrared and red bands, respectively.

In flood modeling, NDVI data is used to estimate 
the vegetation cover and its effect on water infiltration 
and runoff. Vegetation plays a crucial role in regulating 
the water cycle by intercepting rainfall, enhancing 
infiltration, and reducing surface runoff. Therefore, the 
amount and density of vegetation cover can significantly 
influence the runoff and soil erosion rates in a given 
area. By analysing NDVI data, an estimation of the 
amount and density of vegetation cover in an area and 
how it affects water flow can be generated. For example, 
NDVI data can be used to estimate the potential impact 
of land use changes on flooding. If an area is converted 
from forest to agricultural land, the vegetation cover will 
be reduced, which can increase the runoff and erosion 
rates. In this research, the NDVI map with five classes 
was computed using Landsat-8 OLI imagery with a 
resolution of 30 m shown in Figure 8.

Figure 7: Land use land cover map.

Topographic Position Index (TPI)
The Topographic Position Index (TPI) in the provided 
flood hazard mapping code is a crucial layer, revealing 
the elevation characteristics of the terrain in relation to 
its surroundings. The TPI map, computed by subtracting 
the local mean elevation from each pixel’s elevation, 
vividly portrays the landscape. Positive values in red 
signify elevated areas like hills, while negative values in 
blue represent lower regions such as valleys. Areas with 
TPI values near zero, depicted in green/white, suggest 
relatively flat terrain. In the context of flood hazard 
mapping, high positive TPI indicates shown in Figure 
9 have potential barriers to floodwater flow, influencing 
water accumulation in valleys, while high negative TPI 
highlights low-lying areas prone to water accumulation 
during floods. Integrating TPI with distance to water and 
elevation hazard score provides nuanced insights into 
how topographic features influence flood vulnerability. 

Figure 8: Normalised difference vegetation index (NDVI).
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Figure 9: Topographic position index map.

Adjustments to the topographic hazard score based on 
TPI values enhance the flood hazard map’s accuracy, 
creating a comprehensive understanding of how 
terrain characteristics contribute to flood susceptibility. 
Visualising TPI alongside other hazard layers facilitates 
the identification of areas where topography plays a 
crucial role in influencing flood risk.

Topographic Hazard Score
The Topographic Hazard Score shown in Figure 10 
is a tool used to identify flood hazards by analysing 
the topographic features of a region. It is based on 
the Topographic Position Index (TPI) layer, which is 
classified into five different scores corresponding to 
different TPI thresholds. The TPI layer helps identify 
the level of topographic influence on flood hazards 
by assigning scores to different zones based on their 
height and slope. For instance, pixels with TPI values 
greater than 0 are assigned a score of 1, indicating 
elevated regions or ridges that can potentially reduce 
the risk of flooding. Transitional zones are marked by 
TPI values of 2, ranging from 0 to -2. In such zones, 

Figure 10: Topographic hazard score map.

scores of 3, 4, and 5 are assigned to TPI intervals -2 to 
-4, -4 to -6, and below -6, respectively. These intervals 
correspond to increasingly lower heights, indicating dips 
or depressions that are more vulnerable to flooding. The 
Topographic Hazard Score provides a comprehensive 
evaluation of how terrain shape influences flood risk 
patterns. By analysing how topographical features 
from TPI are translated into a visual representation, 
decision-makers can identify locations vulnerable to 
water accumulation and elevated flood risk. Decision-
makers need to understand the subtleties of Topographic 
Hazard Scores as they offer significant insights into the 
topographical aspects that impact flood vulnerability in 
a given region. The Google Earth Engine (GEE) code’s 
effective translation of these topographic subtleties into 
a visual representation helps make it easier to identify 
regions at higher risk of flooding, contributing to better 
flood hazard mapping and management. Figure 11 
illustrates the layout of the code, depicting the spatial 
distribution of Topographic Hazard Scores and aiding 
in the interpretation of the results.

Figure 11: GEE code layout for topographic hazard score.
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Wetness Hazard Score
The Wetness Hazard Score—which is produced by the 
NDWI in the flood hazard mapping code—contributes 
greatly to the overall evaluation of flood hazards and is 
essential in determining the moisture conditions of the 
terrain. The NDWI readings are systematically classified 
into five categories of moisture hazard for the terrain, 
which forms the basis of the score. According to the 
findings, locations with high moisture content (value 
of 5) are at a higher risk of flooding, whereas areas 
with a low moisture danger (values of 4, 3, 2, and 1) 
show progressively lower levels. The highest score is 
given to locations with NDWI values of more than 0.6, 
which highlights areas with significant water content. 
Intermediate scores are given to those with NDWI 
values between 0.2 and 0.6 and -0.2 and 0.2, which 
indicate moderate moisture conditions. Additionally, 
regions with NDWI values less than or equal to -0.6 
and between -0.6 and -0.2 are given lower ratings, 
indicating drier conditions. Higher scores indicate 
places that are prone to water accumulation, which 
makes them sensitive to flooding when these wetness 
hazard scores are correlated with flood susceptibility. On 
the other hand, areas with lower moisture content and 
lower scores have a decreased chance of flooding. The 
Wetness Hazard Score improves the identification and 
comprehension of places vulnerable to flooding based on 
moisture dynamics by providing important information 
to the entire flood hazard mapping approach. In order to 
reduce the total danger and impact of flooding events, 
targeted measures in regions with heightened wetness 
hazard are made possible by this nuanced evaluation, 
which is essential for effective flood management. 
Figure 12 shows the Wetness Hazard Score Map and 
Figure 13 shows GEE layout for Wetness Hazard Score.

Flood Hazard Susceptibility
The final ‘Flood Hazard’ and ‘Flood Hazard Score’ 
layers were created by combining the hazard scores 
of the many criteria that were taken into account in 
the flood hazard susceptibility evaluation. The ‘Flood 
Hazard’ layer (see Figure 11) is the result of adding 
together the scores for terrain, vegetation, moisture, 
elevation, and distance. Every layer adds to the overall 
evaluation of the region’s flood danger. As seen in 
Figure 12, the ‘Flood Hazard Score’ layer further 
refines the assessment by assigning a score to each 
of the following five categories: Very Low (Score 
1), Low (Score 2), Medium (Score 3), High (Score 
4), and Very High (Score 5). A more sophisticated 
understanding of flood vulnerability is made possible 
by this classification, which supports focused mitigation 
and management initiatives. First, the “Distance Hazard 
Score” is used to evaluate the vulnerability of an area 
to water bodies. A score of 1 denotes low susceptibility, 
while a score of 5 indicates great susceptibility. The 
“Topographic Hazard Score” takes into account the 

Figure 12: Wetness hazard score.

Figure 13: Layout of code for wetness hazard score.
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Figure 14: Flood hazard map.

topography of the area; greater positive scores (up to 
5) indicate elevated places that may be less susceptible 
to flooding, while lower negative values (down to -8) 
indicate valleys or depressions that are more vulnerable. 
The effect of vegetation on flooding is measured by 
the ‘Vegetation Hazard Score’. Denser vegetation is 
indicated by higher ratings (up to 5), which can lower 
the risk of flooding. The “Wetness Hazard Score” 
measures the amount of water in the soil; places that 
score higher (up to 5) are considered to be wetter and 
more likely to flood. In conclusion, the ‘height Hazard 
Score’ takes into account the height of the terrain; higher 
values (up to 5) denote lower elevations and greater 
susceptibility. Decision-makers can identify regions 
that require flood management measures in order of 
priority by using the combined complete assessment of 
flood susceptibility provided by the ‘Flood Hazard’ and 
‘Flood Hazard Score’ layers. By utilising the synergy 
of numerous characteristics, this approach improves 

Figure 15: GEE code layout for flood hazard.

the flood susceptibility assessment’s accuracy and 
applicability. The utilization of Google Earth Engine, 
which enables quick processing of satellite data and 
effective computation of hazard scores for well-informed 
decision-making, adds to the methodology’s efficiency. 
Figure 14 shows the Flood Hazard Susceptibility and 
Figure 15 shows the GEE code layout for Flood Hazard 
Susceptibility. 

Discussions

This study used a multi-layered strategy for its thorough 
flood hazard assessment, incorporating multiple 
environmental parameters to measure how susceptible 
the study area was to floods. The Water Occurrence 
layer highlighted permanent water features as potential 
risk factors and offered a basic grasp of water 
distribution worldwide. The next layers—Permanent 
Water, Distance to Water, Elevation, and Topographic 
Hazard Score—helped to improve this study by taking 
into account elements including the topography, terrain 
elevation, and the permanence of water bodies as well 
as proximity to water (Meraj et al., 2018). By taking 
into account the water content in flood vulnerability 
and the quality of the vegetation, the incorporation 
of vegetation indices (NDVI and NDWI) improved 
the assessment even further. The NDWI-derived 
Wetness Hazard Score was important in evaluating the 
terrain’s moisture characteristics, classifying regions 
into five wetness levels. This careful analysis made 
a substantial contribution to our understanding of 
regions that are more likely to accumulate water and 
experience flooding. The flood hazard assessment 
gained complexity by taking into account environmental 
elements such as land use/cover and topography 
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characteristics using TPI, topography Hazard Score, and 
Slope Map. This gave rise to a thorough understanding 
of susceptibility. The Google Earth Engine (GEE) 
code demonstrated exceptional speed in processing 
large amounts of geographical data, allowing for the 
rapid processing and assessment of different hazard 
ratings (Vijay et al., 2007). The code’s quick analysis 
of the topography, vegetation, and moisture dynamics 
allowed for early decision-making about flood control. 
In addition to processing these various environmental 
parameters quickly, the GEE code also converted 
them into visual representations, which helped 
decision-makers pinpoint high-risk areas and create 
focused intervention plans. A thorough assessment 
of flood vulnerability was produced by combining 
the hazard scores from several factors in the section 
on flood hazard susceptibility (Vijay et al., 2009). A 
comprehensive understanding of spatial distribution 
was made possible by the integration of multiple layers, 
and a quantitative assessment of vulnerability was 
provided by the Flood Hazard Score. The evaluation 
was expedited by using GEE in this process, proving 
its usefulness in creating decision support systems for 
flood risk management. The study offered insights into 
the dynamic interaction of several variables in flood 
susceptibility and stressed the significance of taking 
topography, elevation, vegetation, and water distribution 
into account when discussing specific layers. The 
GEE code’s effectiveness in managing these intricate 
environmental factors emphasises how important it is 
for accelerating the procedures involved in making 
decisions about urban development and flood control 
(Hussain et al., 2018). To sum up, the comprehensive 
methodology of the study, in conjunction with the 
effective use of GEE, makes a substantial contribution 
to flood hazard mapping and decision support systems. 
Including a variety of environmental factors improves 
the accuracy of flood susceptibility evaluations and 
offers insightful information for developing resilient 
infrastructure and managing disasters in flood-prone 
areas.

Conclusion

Using a variety of environmental factors, this study 
has shown the efficacy of a thorough, multi-layered 
approach to flood hazard assessment. Water Occurrence, 
Permanent Water, Elevation, Distance to Water, 
Topographic Hazard Score, Vegetation Indices, and 
Wetness Hazard Score have all been integrated to 
provide a more complex picture of the geographic 

distribution of flood susceptibility. Simplifying the 
analysis and decision-making process has been made 
possible with the help of Google Earth Engine (GEE). 
Its ability to process large amounts of geographic data 
efficiently allowed for the quick calculation of hazard 
scores, which gave important insights into the dynamics 
of moisture, vegetation, and terrain. This efficiency plays 
a critical role, especially when it comes to reducing the 
time required for disaster response and management. 
This study could lead to better-informed decision 
support systems for flood risk management, which 
could have significant future ramifications. Through the 
integration of many environmental parameters, decision-
makers are able to effectively allocate resources, 
plan robust infrastructure, and prioritise intervention 
options. These systems are more flexible in reacting 
to fast-paced and dynamic situations because of the 
GEE’s rapid data processing capability. The knowledge 
gathered from this study can help with the development 
of flood mitigation methods in an era of rapidly rising 
urbanization and climatic uncertainty. Faster and more 
accurate evaluations are promised by the inclusion of 
GEE in future disaster management initiatives, enabling 
prompt decision-making to reduce the impact of floods 
on vulnerable areas. All things considered, the studies 
emphasise how important integrated environmental 
modelling and GEE are to improving our ability to 
effectively manage and react to floods.
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