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Abstract: Climatic time series data are often nonlinear and non-stationary and hence the use of traditional 
techniques may not be suitable for their analysis. This research is focused on the monthly series of air temperature 
and precipitation data of 25 years from 1988 to 2012 at Langtang Meteorological Station (LMS), Kyangjing in 
Langtang River basin, Nepal to extract multi-scale cycles and trends. To address the non-linearity and non-stationary 
of these time series, we used Empirical Mode Decomposition (EMD) method. EMD decomposed LMS temperature 
and precipitation series into different oscillatory modes called Intrinsic Mode Functions (IMFs) and residue called 
trend. The extracted IMFs are subjected to Fast Fourier Transform (FFT) to determine their average period along 
with their power density. There exist oscillations of 1 year, 3.13 years, 6.25 years, 8.33 years and 12.5 years 
in temperature data. Among these cycles, only 1 year cycle is distinguished from Gaussian white noise at 95% 
confidence level. The air temperature at LMS, Kyangjing reflects monotonic positive trend till 2006 but remains 
as nearly steady state around 3°C from the end of 2006. Similarly, the precipitation data is embedded with cycles 
of 6 months, 1 year, 2.08 years, 2.27 years and 8.33 years of which only the first three are statistically significant 
at 95% confidence level. The precipitation shows a mixed trend with decreasing pattern till mid 1990s, increasing 
pattern till mid 2000s and again decreasing pattern till 2012. One year cycle is dominant in both the time series 
data. The above results reflect that temperature and precipitation fluctuates on various time scales. The effect of 
the changes in temperature and precipitation has already been manifested in the form of melting glaciers in this 
region. The causes for these oscillations might be related to phenomenon like Quasi-biennial Oscillation (QBO), 
solar activity, El Nino, monsoon climate dynamics and other local characteristics of the basin. 
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Introduction

The evidences from scientific research show that 
climate change has started to manifest itself in the 
form of melting glacier, temperature rise, increasing 

weather extremes, etc. Temperature and precipitation 
are fundamental components of climate. The analysis 
of temperature data from 1906 to 2005 shows a linear 
trend of 0.74°C (IPCC, 2007) and 30 years period from 
1983 to 2012 had likely been warmest during last 1400 
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years in the Northern Hemisphere (IPCC, 2014). The 
analysis of precipitation gauge data shows that there 
is a positive trend of 0.89 mm/decade in global land 
precipitation (excluding Antarctica) (New et al., 2001). 

The impact of global and regional climate changes 
on temperature and precipitation, and the factors 
associated with these changes have become a major 
issue in climate science. To address such issues, 
understanding the spatial and temporal characteristics 
of the changes and their possible causes are very 
important. Decomposing climatic time series data into 
different frequency components may give valuable 
clue about the physical processes that affect global 
and regional climate systems. The embedded frequency 
components may occur at different time scales ranging 
from inter-annual to decadal and multi-decadal. These 
cycles represent physical phenomena like QBO, El Niño 
Southern Oscillation (ENSO) and solar cycles.

The identification of trend in climatic series is also 
very important because it gives clue about the climate 
change provided that the temporal resolution of the 
series is long enough. The change can occur gradually, 
abruptly or in a complex form (Kundzewicz and 
Robson, 2004). Trend analysis is the analysis in the 
variation of observations over time in order to extract 
useful information and to quantify them (Esterby, 1996). 
Trend is generally associated with the change caused 
by cumulative artificial or natural processes (Kite, 
1989). But trend assessment is challenging because 
the stochastic nature of time series can induce trend-
like feature even in stationary time series (Fatichi et 
al., 2009).

Shrestha et al. (1999) studied mean monthly value 
of daily maximum temperature from 49 stations of 
Nepal since 1971 to 1994 using linear regression, Mann 
Kendall and Spermann Tests. They concluded that the 
maximum mean annual temperature is increasing from 
1978 by more than 0.06°C in most of northern belt but 
terai region shows less than 0.306°C or even decreasing 
trend. Shrestha et al. (2000) analyzed the time series 
of precipitation data from 78 stations of Nepal using 
spline method and fast Fourier Transform (FFT). They 
concluded that there is no significant trend in rainfall. 
They extracted two dominant cycles of 2.5 and 11 years 
but 2.5 years cycle is not consistent with QBO and 11 
years cycle is statistically insignificant with Zurich 
sunspot numbers. Sherma et al. (2000) found that the 
temperature and precipitation data of Koshi River basin 
increased significantly in some area but most stations 
do not show any trend. 

Climatic time series data are often non-linear and 
non-stationary. So the use of traditional techniques 
may not be suitable. For example, Fourier analysis 
can be used when the series is stationary and linear. 
Although Wavelet analysis has the ability to deal with 
non-stationary series, it cannot handle non-linear series. 
To tackle with the issue of both non-linearity and non-
stationary of the series, Haung et al. (1998) developed a 
method named Empirical Mode Decomposition (EMD). 
Since then, EMD has been widely used to analyze the 
non-linear and non-stationary time series.

This research aims to extract the multi-scale cycles 
and non-linear trend embedded in temperature time 
series at LMS, Kyangjing of Langtang River basin by 
EMD and calculate the average period of each cycle 
using Fast Fourier Transform Algorithm.

Study Area

The Langtang River basin lies in the Langtang Valley 
of Rasuwa district in Nepal (Figure 1). It is about 60 
km in aerial distance toward the North of Kathmandu. 
It is the riverhead of Trisuli River in the Narayani River 
System and has the total basin area of 359.23 km2. Out 
of the total area, 20.65% is covered in snow and ice, 
7.5% in glacier covered debris and the remaining in rock 
and vegetation. The catchment has an elevation between 
3800 m a.s.l up 7234 m a.s.l (Langtang Lirung peak). 
The average altitude (5169 m a.s.l) reflects the high 
potential relief energy of the catchment with a mean 
slope of 26.7°. The meteorological station in Langtang 
Valley that has longest time series of temperature is 
Langtang Meteorological Station at Kyangjing with 
latitude 28.21081o and longitude 85.56948o at an 
elevation of 3862 m a.s.l. Green triangle in Figure 1 
represents LMS. 

Material and Methodology

Materials
Mean monthly temperature and precipitation data 
of LMS, Kyangjing is obtained from Department of 
Hydrology and Meteorology (DHM), Nepal, for the 
period of 25 years from 1988 to 2012. There are less 
than 3% missing values in the data. The missing values 
for temperature are filled by calculating the average 
of previous and following values. Missing values for 
precipitation are filled by taking the historical average 
of rainfall for the same month during analysis period. 
There are no stations in the adjoining areas having 
similar topography and could be used to fill the gaps 
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for LMS. So we used simple approach to fill the gap. 
Since the missing data were very few, we believe that 
it does not mislead our work.

Methods 

Empirical Mode Decomposition
The temperature data is being decomposed by using 
EMD. EMD is a data driven technique developed by 
Haung et al. (1998) to analyze non-linear and non-
stationary signals. This method allows the data to speak 
themselves. Robustness in terms of non-stationary 
and non-linearity makes this method very useful for 
hydro-climatology where the data are usually non-linear 
and non-stationary. Compared to other decomposition 
method, EMD is empirical, intuitive, direct and adaptive 
(Wu and Haung, 2009). The main idea of EMD is to 
decompose the data locally into different oscillatory 
components called Intrinsic Mode Function (IMF). 
To qualify each extracted oscillatory component as 
IMF, each oscillatory component should follow two 
criteria: (1) the number of maxima and the number 
of zero crossing should differ at most by one and 
(2) the mean of envelopes of local maxima and minima 
should be zero at any point. The lower IMFs represent 
fast oscillation components and the higher IMFs 
represent slow oscillations (Zang et al., 2010). The final 
component will not have cycle and is a constant or a 

monotonic function that represents the general trend of 
the time series.

Process for Empirical Mode Decomposition
	1.	 Create lower envelope l (t) by connecting all the 

local minima and upper envelope h(t) by connecting 
all the local maxima using cubical spline of the data  
x(t).

	2.	 Calculate the mean envelope by averaging the lower 
and upper envelope [m(t) = {h(t) + l (t)}/2].

	3.	 Subtract the mean from the original data [g1(t) = 
x(t) – m(t)].       

	4.	 If g1(t) satisfies the two criteria of IMF then g1(t) is 
designated as first intrinsic mode function [C1(t)], 
if not then the difference is treated as the original 
signal and above steps are repeated until the criteria 
of IMF is satisfied. 

	5.	 After first IMF is identified, it is subtracted from the 
original signal and the residual [r1(t) = x(t) – C1(t)] 
is treated as the original signals and subjected to 
the above steps to get IMF2, IMF3 and so on. The 
process is repeated until the final residue is constant 
or monotone. 

In the end the signal is decomposed as 
x (t) = Σ Ci (t) + m (t), i = 1: n; where n is the number 

of IMFs and m (t) is final residue. 

Figure 1: Location map of Langtang River basin (Pradhananga et al., 2014).
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We have used EMD toolbox for Matlab software 
available on http://rcada.ncu.edu.tw.

Fast Fourier Transform
FFT analysis decomposes the given signal into sin 
and cosine functions. It helps to convert the given 
time dependent function into frequency domain. The 
information that are often unknown from time domain 
can be gathered from frequency domain. Fourier 
analysis gives information about the frequencies and 
periods of the signal. We have used ‘fft’ function in 
Matlab to find the periods of extracted IMFs.

Statistical Significance Test
The extracted IMFs are not always rich in information as 
these may contain some noise. Before interpretation of 
the extracted IMFs, significance test can be performed. 
Wu and Haung (2004) have developed statistical 
method to identify whether the extracted IMFs can be 
differentiating from white noise or not. In this method, 
the spread function of various percentiles is calculated 
using the statistical characteristics of artificial white 
noise derived in Wu and Haung (2004). Confidence limit 
level is defined and the upper and lower spread lines 
are determined. Finally, the energy density of the IMFs 
from the data is compared with the spread functions. 
If the IMFs have their energy located above the upper 
bound and below the lower bound, they are considered 
to contain information at the predefined confidence 
level. This test does not include the residual IMF. The 
detail about the statistical significance of extracted IMFs 
is discussed in Wu and Haung (2004).

Results 

EMD of Temperature Data
EMD based analysis of temperature time series extracted 
seven embedded modes and a trend as shown in Figure 
2. The time scale characteristics increase with the mode 
index i.e. frequency of each IMF has gradually reduced 
from IMF1 to IMF7. The last residual component has 
represented the overall trend of the series. The plot of 
extracted IMFs for temperature data shows that IMFs 
higher than 6 are lacking the modulation and hence these 
are added to form a single component that represents 
the trend. This reduces the periodic components of 
temperature to five plus a trend. 

EMD of Precipitation Data
EMD based decomposition of precipitation data also 
resulted in seven components and trend. Figure 3 
depicts the cycles and trend embedded in precipitation 
data. It is evident that the precipitation components are 
excessively extracted after IMF6. So, the sum of 6th, 
7th and 8th components already satisfied the definition 
of trend. Thus, the precipitation at LMS, Kyangjing is 
embedded with five cycles and a trend.

Time Adaptive and Non-linear Trend 
Figure 4 illustrates the time adaptive and non-linear 
trends of precipitation and temperature data. The 
top panel portrays that temperature series at LMS, 
Kyangjing is showing positive trend till 2006 but more 
or less stabilizes around 3°C after 2006. The trend of 

Figure 2: Extracted IMFs for temperature time series using EMD. Panels from top to 
bottom represent the plots of IMF1, IMF2, IMF3, IMF4, IMF5, IMF6, IMF7 and a trend.
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Figure 3: Extracted IMFs for precipitation time series using EMD.

Figure 4: Time adaptive trend of temperature (top) and precipitation (bottom) calculated 
from the residuals resulting from EMD.

precipitation data, shown in bottom panel of Figure 4 
reveals a unique pattern. The LMS precipitation series 
started decreasing from 1988 to November, 1993 but 
started to increase at low rate till September, 2004 and 
after that the trend again shows decreasing pattern.

FFT Analysis of Extracted Cycles
The cycles embedded in temperature and precipitation 
data have different periods. In order to determine their 
periodicities, the cycles are subjected to FFT analysis. 
FFT gives the average period of the components along 
with the power density. The periods of respective 
components extracted from temperature and precipitation 
are shown in Tables 1 and 2.

The FFT of temperature data shows that the power 
concentrates around 12 months for IMF1, 12 months 
for IMF2, 37.5 months for IMF3, 75 months for IMF4, 
100 months for IMF5 and 150 months for IMF6. IMF1 
and IMF2 have equal time period. The reason is a 
mode mixing problem, a major limitation of EMD 
as explained by Haung et al. (2009). Similarly, the 
precipitation data has been composed of the cycles 
of six months, 1 year, 2.08 years, 2.27 years and 8.33 
years. It is evident from Tables 1 and 2 that annual cycle 
has the highest power density in both temperature and 
precipitation series.



104	 Amrit Thapa and Rijan Bhakta Kayastha

Statistical Significance of Extracted Cycles
For temperature data, it is evident from Figure 7 that 
only IMF1 and IMF2 are significant. IMF3, IMF4, IMF5 
and IMF6 are located between the 95% (solid black line) 
and 5% confidence levels (dashed black line). Therefore, 

these IMFs could not be distinguished from the IMFs 
of the Gaussian white noise at 95% confidence level. 
Similarly, the significance test of precipitation shows 
that the cycles of half year, 1 year and 2.08 years are 
significant as shown in Figure 8.

Table 1: Periodicity and power density of extracted IMFs for temperature 
data based on FFT

IMF (temperature) 1 2 3 4 5 6
Maximum power 282587 151047.9 19904.67 17943.43 1409.819 805.9437
Months for max power 12 12 37.5 75 100 150
Periodic component (years) 1 1 3.13 6.25 8.33 12.5

Table 2: Same as Table 1 but for precipitation data

IMF (precipitation) 1 2 3 4 5
Maximum power 14729260 99225459 4236881 1799623 667286
Months for max power 6 12 25 27.2727 100
Periodic component (years) 1/2 1 2.08 2.27 8.33

Figure 6: Periodogram of statistically significant cycles extracted from temperature data.

Figure 5: Periodogram of statistically significant cycles extracted from precipitation data.
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Figure 7: Significance test of cycles extracted from temperature. The black dots are the energy density 
as a function of spectrum weighed mean period for IMF1 to IMF6 based on Fourier spectra.

Figure 8: Significance test of cycles extracted from precipitation data.

Discussion

The only statistically significant one year cycle for 
temperature data at LMS, Kyangjing is resulted from 
the geometry of the Sun and the Earth. This is the cycle 
that has the highest power density representing the 
dominancy. As Earth takes one year to revolve around 
the Sun, one year cycle is obviously reflected in most 
of the climatic time series. One year cycle found in 
this study is in agreement with the result of Yang et al. 
(2009) who analyzed the monthly temperature data of 
Shapingba in Chongqing. Other cycles obtained from 
temperature series are statistically insignificant and 
hence could not be differentiated from noise. We could 
not link these cycles to the specific causes. The cycle 

of 12.5 years is a multiple of cycle 3.13 and 6.25 years. 
These cycles might be resulting from same physical 
process which we could not address in this study. 
Another cycle that is extracted from LMS temperature 
is of 8.33 years. The cycles of 8.33 and 12.5 years 
are very close to those of solar activity. This signifies 
that the activities of Sun can result in multi-scale 
characteristics of temperature fluctuation. A cycle of 
3.13 years is similar to result of Shan and Xian (2006) 
who have also identified a cycle of 3-4 years in global 
mean temperature. 

The half year cycle in precipitation data is due to 
the lag between summer and winter seasons. One 
year cycle is the annual variation resulting from 
monsoon dynamics, a dominant phenomenon for 
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precipitation as verified by the high value of power 
density. The cycle of 2.08 years is QBO like mode. 
This signifies that precipitation at LMS, Kyangjing 
may have teleconnection with the regional climate. 
The precipitation data is also embedded with cycles 
of 2.27 and 8.33 years. These cycles correspond to the 
periods of El Nino but are statistically insignificant. 
Inter-annual variation of precipitation data from Nepal 
and the association of precipitation in Nepal with ENSO 
events are also found in previous study by Shrestha 
et al. (2000). Both temperature and precipitation data 
have a cycle of 8.33 years signifying the influence of 
same phenomenon. Though this cycle is near to the 
period of El Niño, it is noise corrupted. The complexity 
in explaining the reasons for extracted cycles can be 
attributed to the influence of human activities on climate 
change. 

Temperature series at LMS, Kyangjing is showing 
positive trend till 2006 which correlates with the 
result from Pradhananga et al. (2014) who used linear 
method to analyze the trend. The temperature is in 
nearly steady state after 2006 which are not reported 
in earlier studies. The precipitation trend determined in 
this study is not in agreement with the previous studies. 
Pradhananga et al. (2014) concluded that precipitation 
is increasing at Kyangjing from 1988 to 2012 but our 
study shows that precipitation series started decreasing 
from 1988 to 1993, increasing at low rate till 2004 and 
then decreasing till 2012. The reason behind this is we 
used EMD which is capable to determine time adaptive 
trend. In 1990s, temperature is in increasing order and 
precipitation is in decreasing order. The impact of this 
phenomenon on glacier during this period might have 
been negative verified by the glacier terminus retreat 
(Fujita et al., 1998). After 1990s, the temperature is 
in steady state and precipitation in decreasing trend 
which might have also impacted glacier negatively. 
Many studies show that the impact of the change in 
precipitation and temperature has already been reflected 
in the form of melting glaciers in this region (Sugiyama 
et al., 2009; Baral et al., 2014).

Conclusion 

Empirical Mode Decomposition method is one of the 
best available techniques to deal with non-linear and 
non-stationary hydro-climatic series. The analysis of 
air temperature and precipitation data at Langtang 
Meteorological Station (LMS), Kyangjing for 25 years 
from 1988 to 2012 using EMD show that the temperature 

is embedded with cycles of 1 year, 3.13 years, 6.25 
years, 8.33 years and 12.5 years and precipitation is 
embedded with cycles of 6 months, 1 year, 2.08 years, 
2.27 years and 8.33 years. The FFT analysis shows that 
the annual cycle has maximum power density for both 
temperature and precipitation series among others. The 
statistical test of the extracted IMFs shows that most 
of the quasi-periodic components embedded in the 
data are a stochastic noise except the cycle of 1 year 
in temperature series and 6 months, 1 year and 2.08 
years in precipitation series at 95% confidence level. 
The causes for the oscillation of these series might 
be related to phenomenon like QBO, solar activity, El 
Nino and other local characteristics of the basin. But 
in order to completely understand the physical causes 
of these temperature fluctuations, the internal properties 
of the atmospheric system should be analyzed. The 
trend of the temperature series shows monotonically 
increasing pattern till 2006. After 2006, the trend of the 
temperature remains around 3°C. Similarly, precipitation 
series started decreasing till 1993, increasing at low rate 
till 2004 and then decreasing till 2012. The impact of 
the change in precipitation and temperature has already 
been reflected in the form of melting glaciers in this 
region.
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