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Abstract: Climatic time series data are often nonlinear and non-stationary and hence the use of traditional
techniques may not be suitable for their analysis. This research is focused on the monthly series of air temperature
and precipitation data of 25 years from 1988 to 2012 at Langtang Meteorological Station (LMS), Kyangjing in
Langtang River basin, Nepal to extract multi-scale cycles and trends. To address the non-linearity and non-stationary
of these time series, we used Empirical Mode Decomposition (EMD) method. EMD decomposed LMS temperature
and precipitation series into different oscillatory modes called Intrinsic Mode Functions (IMFs) and residue called
trend. The extracted IMFs are subjected to Fast Fourier Transform (FFT) to determine their average period along
with their power density. There exist oscillations of 1 year, 3.13 years, 6.25 years, 8.33 years and 12.5 years
in temperature data. Among these cycles, only 1 year cycle is distinguished from Gaussian white noise at 95%
confidence level. The air temperature at LMS, Kyangjing reflects monotonic positive trend till 2006 but remains
as nearly steady state around 3°C from the end of 2006. Similarly, the precipitation data is embedded with cycles
of 6 months, 1 year, 2.08 years, 2.27 years and 8.33 years of which only the first three are statistically significant
at 95% confidence level. The precipitation shows a mixed trend with decreasing pattern till mid 1990s, increasing
pattern till mid 2000s and again decreasing pattern till 2012. One year cycle is dominant in both the time series
data. The above results reflect that temperature and precipitation fluctuates on various time scales. The effect of
the changes in temperature and precipitation has already been manifested in the form of melting glaciers in this
region. The causes for these oscillations might be related to phenomenon like Quasi-biennial Oscillation (QBO),
solar activity, El Nino, monsoon climate dynamics and other local characteristics of the basin.
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Introduction weather extremes, etc. Temperature and precipitation

The evidences from scientific research show that
climate change has started to manifest itself in the
form of melting glacier, temperature rise, increasing
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are fundamental components of climate. The analysis
of temperature data from 1906 to 2005 shows a linear
trend of 0.74°C (IPCC, 2007) and 30 years period from
1983 to 2012 had likely been warmest during last 1400
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years in the Northern Hemisphere (IPCC, 2014). The
analysis of precipitation gauge data shows that there
is a positive trend of 0.89 mm/decade in global land
precipitation (excluding Antarctica) (New et al., 2001).

The impact of global and regional climate changes
on temperature and precipitation, and the factors
associated with these changes have become a major
issue in climate science. To address such issues,
understanding the spatial and temporal characteristics
of the changes and their possible causes are very
important. Decomposing climatic time series data into
different frequency components may give valuable
clue about the physical processes that affect global
and regional climate systems. The embedded frequency
components may occur at different time scales ranging
from inter-annual to decadal and multi-decadal. These
cycles represent physical phenomena like QBO, El Nifo
Southern Oscillation (ENSO) and solar cycles.

The identification of trend in climatic series is also
very important because it gives clue about the climate
change provided that the temporal resolution of the
series is long enough. The change can occur gradually,
abruptly or in a complex form (Kundzewicz and
Robson, 2004). Trend analysis is the analysis in the
variation of observations over time in order to extract
useful information and to quantify them (Esterby, 1996).
Trend is generally associated with the change caused
by cumulative artificial or natural processes (Kite,
1989). But trend assessment is challenging because
the stochastic nature of time series can induce trend-
like feature even in stationary time series (Fatichi et
al., 2009).

Shrestha et al. (1999) studied mean monthly value
of daily maximum temperature from 49 stations of
Nepal since 1971 to 1994 using linear regression, Mann
Kendall and Spermann Tests. They concluded that the
maximum mean annual temperature is increasing from
1978 by more than 0.06°C in most of northern belt but
terai region shows less than 0.306°C or even decreasing
trend. Shrestha et al. (2000) analyzed the time series
of precipitation data from 78 stations of Nepal using
spline method and fast Fourier Transform (FFT). They
concluded that there is no significant trend in rainfall.
They extracted two dominant cycles of 2.5 and 11 years
but 2.5 years cycle is not consistent with QBO and 11
years cycle is statistically insignificant with Zurich
sunspot numbers. Sherma et al. (2000) found that the
temperature and precipitation data of Koshi River basin
increased significantly in some area but most stations
do not show any trend.

Climatic time series data are often non-linear and
non-stationary. So the use of traditional techniques
may not be suitable. For example, Fourier analysis
can be used when the series is stationary and linear.
Although Wavelet analysis has the ability to deal with
non-stationary series, it cannot handle non-linear series.
To tackle with the issue of both non-linearity and non-
stationary of the series, Haung et al. (1998) developed a
method named Empirical Mode Decomposition (EMD).
Since then, EMD has been widely used to analyze the
non-linear and non-stationary time series.

This research aims to extract the multi-scale cycles
and non-linear trend embedded in temperature time
series at LMS, Kyangjing of Langtang River basin by
EMD and calculate the average period of each cycle
using Fast Fourier Transform Algorithm.

Study Area

The Langtang River basin lies in the Langtang Valley
of Rasuwa district in Nepal (Figure 1). It is about 60
km in aerial distance toward the North of Kathmandu.
It is the riverhead of Trisuli River in the Narayani River
System and has the total basin area of 359.23 km?. Out
of the total area, 20.65% is covered in snow and ice,
7.5% in glacier covered debris and the remaining in rock
and vegetation. The catchment has an elevation between
3800 m a.s.l up 7234 m a.s.l (Langtang Lirung peak).
The average altitude (5169 m a.s.l) reflects the high
potential relief energy of the catchment with a mean
slope of 26.7°. The meteorological station in Langtang
Valley that has longest time series of temperature is
Langtang Meteorological Station at Kyangjing with
latitude 28.21081° and longitude 85.56948° at an
elevation of 3862 m a.s.l. Green triangle in Figure 1
represents LMS.

Material and Methodology

Materials

Mean monthly temperature and precipitation data
of LMS, Kyangjing is obtained from Department of
Hydrology and Meteorology (DHM), Nepal, for the
period of 25 years from 1988 to 2012. There are less
than 3% missing values in the data. The missing values
for temperature are filled by calculating the average
of previous and following values. Missing values for
precipitation are filled by taking the historical average
of rainfall for the same month during analysis period.
There are no stations in the adjoining areas having
similar topography and could be used to fill the gaps
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Figure 1: Location map of Langtang River basin (Pradhananga et al., 2014).

for LMS. So we used simple approach to fill the gap.
Since the missing data were very few, we believe that
it does not mislead our work.

Methods

Empirical Mode Decomposition

The temperature data is being decomposed by using
EMD. EMD is a data driven technique developed by
Haung et al. (1998) to analyze non-linear and non-
stationary signals. This method allows the data to speak
themselves. Robustness in terms of non-stationary
and non-linearity makes this method very useful for
hydro-climatology where the data are usually non-linear
and non-stationary. Compared to other decomposition
method, EMD is empirical, intuitive, direct and adaptive
(Wu and Haung, 2009). The main idea of EMD is to
decompose the data locally into different oscillatory
components called Intrinsic Mode Function (IMF).
To qualify each extracted oscillatory component as
IMF, each oscillatory component should follow two
criteria: (1) the number of maxima and the number
of zero crossing should differ at most by one and
(2) the mean of envelopes of local maxima and minima
should be zero at any point. The lower IMFs represent
fast oscillation components and the higher IMFs
represent slow oscillations (Zang et al., 2010). The final
component will not have cycle and is a constant or a

monotonic function that represents the general trend of
the time series.

Process for Empirical Mode Decomposition

1. Create lower envelope /() by connecting all the
local minima and upper envelope 4 (#) by connecting
all the local maxima using cubical spline of the data
x(1).

2. Calculate the mean envelope by averaging the lower
and upper envelope [m(t) = {h(f) + [(2)}/2].

3. Subtract the mean from the original data [g,(?) =
x(t) — m(0)].

4. If g,(?) satisfies the two criteria of IMF then g (?) is
designated as first intrinsic mode function [C,(?)],
if not then the difference is treated as the original
signal and above steps are repeated until the criteria
of IMF is satisfied.

5. After first IMF is identified, it is subtracted from the
original signal and the residual [r,(?) = x(¢) — C,(?)]
is treated as the original signals and subjected to
the above steps to get IMF,, IMF, and so on. The
process is repeated until the final residue is constant
or monotone.

In the end the signal is decomposed as
x(t)=Z C,(t) + m(1), i = 1: n; where n is the number
of IMFs and m () is final residue.
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We have used EMD toolbox for Matlab software
available on http.//rcada.ncu.edu.tw.

Fast Fourier Transform

FFT analysis decomposes the given signal into sin
and cosine functions. It helps to convert the given
time dependent function into frequency domain. The
information that are often unknown from time domain
can be gathered from frequency domain. Fourier
analysis gives information about the frequencies and
periods of the signal. We have used ‘fft’ function in
Matlab to find the periods of extracted IMFs.

Statistical Significance Test

The extracted IMFs are not always rich in information as
these may contain some noise. Before interpretation of
the extracted IMFs, significance test can be performed.
Wu and Haung (2004) have developed statistical
method to identify whether the extracted IMFs can be
differentiating from white noise or not. In this method,
the spread function of various percentiles is calculated
using the statistical characteristics of artificial white
noise derived in Wu and Haung (2004). Confidence limit
level is defined and the upper and lower spread lines
are determined. Finally, the energy density of the IMFs
from the data is compared with the spread functions.
If the IMFs have their energy located above the upper
bound and below the lower bound, they are considered
to contain information at the predefined confidence
level. This test does not include the residual IMF. The
detail about the statistical significance of extracted IMFs
is discussed in Wu and Haung (2004).

Results

EMD of Temperature Data

EMD based analysis of temperature time series extracted
seven embedded modes and a trend as shown in Figure
2. The time scale characteristics increase with the mode
index i.e. frequency of each IMF has gradually reduced
from IMF, to IMF,. The last residual component has
represented the overall trend of the series. The plot of
extracted IMFs for temperature data shows that IMFs
higher than 6 are lacking the modulation and hence these
are added to form a single component that represents
the trend. This reduces the periodic components of
temperature to five plus a trend.

EMD of Precipitation Data

EMD based decomposition of precipitation data also
resulted in seven components and trend. Figure 3
depicts the cycles and trend embedded in precipitation
data. It is evident that the precipitation components are
excessively extracted after IMF,. So, the sum of 6th,
7th and 8th components already satisfied the definition
of trend. Thus, the precipitation at LMS, Kyangjing is
embedded with five cycles and a trend.

Time Adaptive and Non-linear Trend

Figure 4 illustrates the time adaptive and non-linear
trends of precipitation and temperature data. The
top panel portrays that temperature series at LMS,
Kyangjing is showing positive trend till 2006 but more
or less stabilizes around 3°C after 2006. The trend of
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Figure 2: Extracted IMFs for temperature time series using EMD. Panels from top to
bottom represent the plots of IMF,, IMF,, IMF,, IMF ,, IMF, IMF, IMF, and a trend.
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Figure 3: Extracted IMFs for precipitation time series using EMD.
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Figure 4: Time adaptive trend of temperature (top) and precipitation (bottom) calculated
from the residuals resulting from EMD.

precipitation data, shown in bottom panel of Figure 4
reveals a unique pattern. The LMS precipitation series
started decreasing from 1988 to November, 1993 but
started to increase at low rate till September, 2004 and
after that the trend again shows decreasing pattern.

FFT Analysis of Extracted Cycles

The cycles embedded in temperature and precipitation
data have different periods. In order to determine their
periodicities, the cycles are subjected to FFT analysis.
FFT gives the average period of the components along
with the power density. The periods of respective
components extracted from temperature and precipitation
are shown in Tables 1 and 2.

The FFT of temperature data shows that the power
concentrates around 12 months for IMF,, 12 months
for IMF,, 37.5 months for IMF;, 75 months for IMF,,
100 months for IMF, and 150 months for IMF,. IMF,
and IMF, have equal time period. The reason is a
mode mixing problem, a major limitation of EMD
as explained by Haung et al. (2009). Similarly, the
precipitation data has been composed of the cycles
of six months, 1 year, 2.08 years, 2.27 years and 8.33
years. It is evident from Tables 1 and 2 that annual cycle
has the highest power density in both temperature and
precipitation series.
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Table 1: Periodicity and power density of extracted IMFs for temperature
data based on FFT

IMF (temperature) 1 2 3 4 5 6

Maximum power 282587 151047.9 19904.67 17943.43 1409.819 805.9437
Months for max power 12 12 37.5 75 100 150
Periodic component (years) 1 1 3.13 6.25 8.33 12.5

Table 2: Same as Table 1 but for precipitation data

IMF (precipitation) 1 2 3 4 5

Maximum power 14729260 99225459 4236881 1799623 667286
Months for max power 6 12 25 27.2727 100
Periodic component (years) 12 1 2.08 2.27 8.33

Statistical Significance of Extracted Cycles

For temperature data, it is evident from Figure 7 that
only IMF, and IMF, are significant. IMF,, IMF,, IMF
and IMF are located between the 95% (solid black line)
and 5% confidence levels (dashed black line). Therefore,

these IMFs could not be distinguished from the IMFs
of the Gaussian white noise at 95% confidence level.
Similarly, the significance test of precipitation shows
that the cycles of half year, 1 year and 2.08 years are
significant as shown in Figure 8.
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Figure 5: Periodogram of statistically significant cycles extracted from precipitation data.
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Figure 6: Periodogram of statistically significant cycles extracted from temperature data.
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Significance test of IMFs of white noise for temperature data
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Figure 7: Significance test of cycles extracted from temperature. The black dots are the energy density
as a function of spectrum weighed mean period for IMF, to IMF, based on Fourier spectra.

Significance test of IMFs of white noise for precipitation data
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Figure 8: Significance test of cycles extracted from precipitation data.

Discussion

The only statistically significant one year cycle for
temperature data at LMS, Kyangjing is resulted from
the geometry of the Sun and the Earth. This is the cycle
that has the highest power density representing the
dominancy. As Earth takes one year to revolve around
the Sun, one year cycle is obviously reflected in most
of the climatic time series. One year cycle found in
this study is in agreement with the result of Yang et al.
(2009) who analyzed the monthly temperature data of
Shapingba in Chongqing. Other cycles obtained from
temperature series are statistically insignificant and
hence could not be differentiated from noise. We could
not link these cycles to the specific causes. The cycle

of 12.5 years is a multiple of cycle 3.13 and 6.25 years.
These cycles might be resulting from same physical
process which we could not address in this study.
Another cycle that is extracted from LMS temperature
is of 8.33 years. The cycles of 8.33 and 12.5 years
are very close to those of solar activity. This signifies
that the activities of Sun can result in multi-scale
characteristics of temperature fluctuation. A cycle of
3.13 years is similar to result of Shan and Xian (2006)
who have also identified a cycle of 3-4 years in global
mean temperature.

The half year cycle in precipitation data is due to
the lag between summer and winter seasons. One
year cycle is the annual variation resulting from
monsoon dynamics, a dominant phenomenon for
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precipitation as verified by the high value of power
density. The cycle of 2.08 years is QBO like mode.
This signifies that precipitation at LMS, Kyangjing
may have teleconnection with the regional climate.
The precipitation data is also embedded with cycles
of 2.27 and 8.33 years. These cycles correspond to the
periods of El Nino but are statistically insignificant.
Inter-annual variation of precipitation data from Nepal
and the association of precipitation in Nepal with ENSO
events are also found in previous study by Shrestha
et al. (2000). Both temperature and precipitation data
have a cycle of 8.33 years signifying the influence of
same phenomenon. Though this cycle is near to the
period of El Nifio, it is noise corrupted. The complexity
in explaining the reasons for extracted cycles can be
attributed to the influence of human activities on climate
change.

Temperature series at LMS, Kyangjing is showing
positive trend till 2006 which correlates with the
result from Pradhananga et al. (2014) who used linear
method to analyze the trend. The temperature is in
nearly steady state after 2006 which are not reported
in earlier studies. The precipitation trend determined in
this study is not in agreement with the previous studies.
Pradhananga et al. (2014) concluded that precipitation
is increasing at Kyangjing from 1988 to 2012 but our
study shows that precipitation series started decreasing
from 1988 to 1993, increasing at low rate till 2004 and
then decreasing till 2012. The reason behind this is we
used EMD which is capable to determine time adaptive
trend. In 1990s, temperature is in increasing order and
precipitation is in decreasing order. The impact of this
phenomenon on glacier during this period might have
been negative verified by the glacier terminus retreat
(Fujita et al., 1998). After 1990s, the temperature is
in steady state and precipitation in decreasing trend
which might have also impacted glacier negatively.
Many studies show that the impact of the change in
precipitation and temperature has already been reflected
in the form of melting glaciers in this region (Sugiyama
et al., 2009; Baral et al., 2014).

Conclusion

Empirical Mode Decomposition method is one of the
best available techniques to deal with non-linear and
non-stationary hydro-climatic series. The analysis of
air temperature and precipitation data at Langtang
Meteorological Station (LMS), Kyangjing for 25 years
from 1988 to 2012 using EMD show that the temperature

is embedded with cycles of 1 year, 3.13 years, 6.25
years, 8.33 years and 12.5 years and precipitation is
embedded with cycles of 6 months, 1 year, 2.08 years,
2.27 years and 8.33 years. The FFT analysis shows that
the annual cycle has maximum power density for both
temperature and precipitation series among others. The
statistical test of the extracted IMFs shows that most
of the quasi-periodic components embedded in the
data are a stochastic noise except the cycle of 1 year
in temperature series and 6 months, 1 year and 2.08
years in precipitation series at 95% confidence level.
The causes for the oscillation of these series might
be related to phenomenon like QBO, solar activity, El
Nino and other local characteristics of the basin. But
in order to completely understand the physical causes
of these temperature fluctuations, the internal properties
of the atmospheric system should be analyzed. The
trend of the temperature series shows monotonically
increasing pattern till 2006. After 2006, the trend of the
temperature remains around 3°C. Similarly, precipitation
series started decreasing till 1993, increasing at low rate
till 2004 and then decreasing till 2012. The impact of
the change in precipitation and temperature has already
been reflected in the form of melting glaciers in this
region.
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