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Abstract: Volume change in glaciers across the world is an established fact; however, response of Himalayan 
glaciers to climate change is not well understood. Looking at the importance of volumetric information of glaciers, 
glaciologists use different methods of volume estimation e.g., geophysical methods including GPR surveys, 
seismic profiling and tomography; glaciological methods by installing stakes and empirically established scaling 
methods. However, considering the difficulty in field measurements associated with Himalayan glaciers, indirect 
assessment techniques are being used widely. The objective of this study was to compare the response of two 
most studied western Himalayan glaciers i.e. Kolahoi glacier and Chhota Shigri glacier over the last three to four 
decades using empirical relationships of glacier volume estimation. The factors such as glacier length, area and 
slope were extracted from satellite data and digital elevation models. Glacier area change for Kolahoi glacier and 
Chhota Shigri glacier was mapped from 1980 to 2015 using Landsat images. The analysis of data showed that 
the areal extent of glaciers has receded from 1980 to 2015. 

Three scaling laws applied in this study yield different volume estimates for the glaciers from two adjoining 
sub-basins of the Indus basin, western Himalaya. The glaciers reported in this study show –10% (Kolahoi glacier) 
and –2.6% (Chhota Shigri glacier) change in their length and –13.5% (Kolahoi glacier) and –2.1% changes in the 
areal surface during the study period of 35 years. Cumulative change in volume estimated using different methods 
was found to be comparable i.e., –18% for Kolahoi and –3% for Chhota Shigri glacier, during the study period. 
However, progressive change in volume of two glaciers shows slight difference—Kolahoi glacier is declining rapidly 
as compared to Chhota Shigri glacier. Incorporation of field measurements into satellite data analysis, and their 
comparison strengthens the estimates of pattern in ice volume variability. The study tried to identify parallels and 
differences in the melt response of two most studied glaciers in Indus basin, based on available satellite images. 
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Introduction

Glaciers around the world are experiencing massive 
ablation due to global warming (Wang et al., 2014). 
Glacier studies around the world indicate that most 
mountain glaciers lost mass during the last three decades 

(Kaser et al., 2006). Advent of remote sensing techniques 
and advancement therein revolutionized regional scale 
studies in earth sciences in general (Hulley et al., 2012; 
Svoboda and Paul, 2009; Wang et al., 2015; Fisher et 
al., 2012; Sexton et al., 2013) and glaciological studies 
in particular (Kachosuie et al., 2013; Bolch et al., 2010; 
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Bhardwaj et al., 2015; Erdenetuya et al., 2006; Berthier 
et al., 2004). Easy availability of various types of 
satellite data e.g. Landsat, ASTER, Sentinel, MODIS, 
Google Earth (Luetscher et al., 2011; Yamagishi et al., 
2010; Lisle, 2006; Patterson, 2007) etc. has brought an 
unprecedented increase in the indirect assessment of 
various glaciological parameters in recent times.

For a better understanding of the glacier dynamics, 
ice thickness is a key indicator which can be measured 
using techniques such as seismic sounding, ice 
penetrating radar or by drilling (Cooper et al., 2012). 
The Himalayas also known as the third pole due to 
largest glacier coverage outside the polar regions 
are still comparatively lesser understood because of 
remoteness, ruggedness, the complicated geopolitics 
of the region, and associated difficult physical access 
to these glaciers (Bolch et al., 2012). The rugged 
terrain in the Himalayas hampers extensive logistic 
arrangements for carrying out field-based glacier volume 
estimation studies. Some researchers have attempted 
glacier volume studies either directly in the field using 
geophysical sounding (Monnier et al., 2011; Irvine-Fynn 
et al., 2006; Singh et al., 2010; Shean and Marchant, 
2010; Del Rio et al., 2012; Nijampurkar et al., 1993; 
Singh et al., 2013; Kumar, 1999) or glaciological 
methods (Wagnon et al., 2007; Azam et al., 2012; 
Dobhal et al., 1995; Nijampurkar and Rao, 1992). But 
these methods cannot be applied in regional scale glacier 
volume estimation for each and every glacier. 

Remote sensing techniques and satellite data helps in 
areal parameterization of glacier surfaces not only at the 
regional scale but global scale too, and using area as an 
input, various approaches to estimate glacier volumes 
have been used successfully e.g. volume–area (V–A) 
relations (Chen and Ohmura, 1990; Bahr, 1997; Agarwal 
and Tayal, 2013; Frey et al., 2014) and slope-dependent 
ice thickness estimations (Haeberli and Hoelzle, 1995). 
Ice thickness models have been used recently to model 
ice thickness (Farinotti et al., 2009a; Linsbauer et al., 
2009; Huss and Farinotti, 2012; Li et al., 2012; Clarke 
et al., 2013; McNabb et al., 2012; van Pelt et al., 2013). 
A vast number of literature is available related to 
volume estimation using various approaches (Adhikari 
and Marshall, 2012; Singh et al., 1997; Farinotti et al., 
2009b; Surazakov and Aizen, 2006; Keutterling and 
Thomas, 2006; Kumar et al., 2008; Chen and Ohmura, 
1990; Jost et al., 2012; Gärtner-Roer et al., 2014; Chen 
and Ohmura, 1990; Mohd Soheb, 2016). The Randolph 
Glacier Inventory (RGI) providing a globally complete 
data set of glacier coverage is available in the public 

domain and can be used for assessing glacier volumes 
without relying on data extrapolation. 

Cogley (2016), Marzeion et al. (2012), Grinsted (2013) 
and Radić et al. (2014) are some important large scale 
glacier volume studies using empirically established 
laws meant for volume estimations. The volume 
estimations carried out for the Hindu Kush-Himalayan 
(HKH) region indicate substantial differences. However, 
inconsistencies in delineations of areas and differing 
regional set-up hamper a comparative analysis and these 
are some of the limitations of volume approximation 
exercise using established scaling laws. Apart from that 
area-volume scaling biases issue for large ice masses, 
and incomplete inventory data also pose a limitation of 
scaling laws which offer explanations for the difference 
in ice volumes by different scholars (Grinsted, 2013). 
Depending on the chosen glacier inventory, Bolch et 
al. (2012), Ohmura et al. (2009) and Cogley (2011) 
estimated ice volumes in the Himalayas and reported 
the pros and cons of these methods. Also, researchers 
modifying and evolving new empirical methods are 
engaged intensively in refining and strengthening these 
techniques (Huss, 2013; Adhikari and Marshall, 2012; 
Radić et al., 2007; Berthier et al., 2006; Nye, 2015). 

Extraction of glacier parameters such as glacier 
length, area, mean elevation, slope, aspect, vertical 
thinning, etc. from space-borne satellite data and digital 
elevation models is one of the most plausible options 
in regional scale studies (Lopez et al., 2010; Paul et al., 
2007; Machguth and Huss, 2014; Winsvold et al., 2014). 
Though, satellite data and DEMs of very high spatial 
resolutions are available now-a-days, those with very 
high resolution are very cost expensive and that too, 
for working at regional scale lead to huge budgetary 
consumption and hence limit their regional to global 
scale use in inventory endeavours because of financial 
and logistic constraints. However, freely available 
SRTM, ASTER DEMs and Landsat multisensor data are 
also suitable for such inventory and glacier volumetric 
studies (Frey and Paul, 2012; Surazakov and Aizen, 
2006; Berthier et al., 2006; Frey et al., 2012).

Here, we present volume estimation of two glaciers 
from India in western Himalayas i.e. Kolahoi from 
Jhelum valley in Jammu & Kashmir and Chhota Shigri 
from Chenab valley in Himachal Pradesh. Field-based 
mass balance studies for Kolahoi glacier continues since 
2009 and for Chhota Shigri glacier since 2003. Several 
workers like Dobhal et al. (1995) and Azam et al. (2014, 
2016) have reported volume estimates of the Chhota 
Shigri glacier using field-based methods, and Murtaza 
and Romshoo (2016) have presented volume estimates 
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of Kolahoi glacier using Area-Thickness method. This 
study applies to empirically established physics based 
methods for volume estimation up to 2015, incorporates 
field observations in improving the assessment of glacier 
extents, and identifies commonalities and differences in 
melt response of these two glaciers over different time 
periods. This study thus signifies the micro-climatic 
variation in rates of mass loss of glaciers in two different 
sub-basins of Indus basin. 

Study Area

Kolahoi glacier and Chhota Shigri glacier are two 
glaciers of Pir Panjal range in western Himalayas 
(Figure 1). Kolahoi glacier is the largest glacier in the 
West Liddar valley in Anantnag, whose meltwater is a 
major contributor to the river Jhelum. Kolahoi glacier 
in the Liddar valley has the sub-Mediterranean type of 
climate and receives its 80% of annual rainfall in winter 
and spring season (Kanth et al., 2011). Chhota Shigri 
glacier is influenced by two atmospheric circulation 
systems: the Indian monsoon during summer (July–
September) and the northern hemisphere mid-latitude 

westerlies during winter (January–April) (Bookhagen 
and Burbank, 2006; Singh et al., 1997; Gardelle et al., 
2011). Chhota Shigri glacier is situated in the Chandra 
River valley which is comparatively drier than the 
southern slopes of the Pir Panjal range because this 
part falls in the rain shadow region with the main ridge 
mostly oriented to W-E. This presents hindrance to part 
of the monsoon flux to reach the valley (Bookhagen 
and Burbank, 2006). In the upper accumulation zone, 
relative humidity reaches >65% and gets occasional 
snow and drizzle. The annual precipitation on the glacier 
is in the range of 150-200 cm of snow (Nijampurkar 
and Rao, 1992). Cold dry season from October to April 
is the chief characteristic climatic feature of the lower 
valley. Despite being in the same basin i.e. Indus basin, 
both the glaciers show some differences in geometrical, 
altitudinal and climatic characteristics. Latitudinal extent 
of Kolahoi is 34° 9′ 29″ N to 34° 10′ 57″ N and that for 
Chhota Shigri is 32° 11′ 54″ N-32° 17′ 12″ N. Kolahoi 
glacier’s orientation is northwest in accumulation and 
North in ablation zones and Chhota Shigri is oriented 
northeast in its accumulation zone and North in ablation 
zones as Kolahoi. In terms of size, Chhota Shigri is 

Figure 1: Map of study area.
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bigger than Kolahoi. Bolch et al. (2012) reported that 
overall debris cover percentage in the Karakoram 
Himalayas is about 10%, which could be validated 
through our field observations for these two glaciers. 

Data and Methodology

Three empirically established methods: two area–
volume relations and one slope-dependent have 
been used for ice volume approximation for the two 
glaciers of western Himalayan region in this study. The 
empirical relationships and scaling laws are applied to 
geospatial data extracted from digital elevation models 
(DEMs): one from ASTER DEM and the other SRTM 
DEM; and the areal parameter of the glacier surface 
calculated from Landsat multisensor images for the time 
periods starting from 1980 to 2015, details for which are 
listed in Table 1. We used SRTM and ASTER digital 
elevation models (DEMs) to calculate mean slope of 
both the glaciers to estimate changes in glacier volume 
over the period 2000–2010 using Nye’s (1952) glacier 
flow mechanics method. We also analyzed Landsat 
multisensor, multispectral images to quantify the rate 
of glacier recession. 

The glacier outlines used for the calculations have 
been compiled by remote sensing, based on Landsat 
satellite scenes acquired between 1980 and 2015. 
Boundaries of both the glaciers were delineated 
from Landsat scenes using visual interpretations and 
overlaying high-resolution imagery from Google 
Earth, which made the outlines accurate than RGI 5.0. 
Centreline estimation used here has been performed on 
multisensor Landsat satellite data overlaid over SRTM 
DEM version 4.0 of 30 m spatial resolution. The values 
for mean slope as well as minimum and maximum 
elevation were attained using DEMs. Details of satellite 
data and DEMs used are provided in Table 1.

Area Change Assessment
Decadal area changes of both the glaciers were carried 
out using the Landsat satellite images. The recessional 
changes over the 1980-2015 were observed for Chhota 
Shigri and Kolahoi glaciers.

Calculation of Accumulation Area Ratio
“The accumulation area ratio (AAR) is a ratio between 
accumulation area and the total area of a glacier” 
(Georges, 2004). Change in Accumulation Area Ratio 
(AAR) has a significant implication on the retreat or 
advance of any glacier and hence on glacier health. 
AAR of the Kolahoi glaciers was extracted based on 
the snow line using satellite images for the year 1980, 
1990, 2000, 2010 and 2015 and that for the Chhota 
Shigri glacier has been used from the published and 
unpublished sources. 

Methods to Calculate Glacier Thickness and 
Volume
Three approaches were applied to calculate the ice 
volume in this study. 

Glacier Flow Mechanics Method/Slope-dependent 
Thickness Estimation Method
Nye’s (1952) theory was taken by Paterson (2000) to 
build upon the flow mechanics of an infinitely wide 
glacier, suggested a relation of ice thickness to the ice 
surface slope. 

	 h =	τ/ρ×g×sin(α)	 (1)

where τ is the average basal shear stress, ρ the ice 
density, g the gravitational acceleration, and α the mean 
surface slope along the central flowline.

Values of τ used in the literature vary from 50 kPa to 
150 kPa (Hooke, 2005; Cooper et al., 2012). Here, we 
have used 100 kPa as the ideal value of τ (basal shear 

Table 1: Satellite data and DEM specifications

Kolahoi Chhota Shigri Spatial Resolution
Date Path/Row Date Path/Row
06-10-1980 160/36 16-09-1980 158/38 60
07-08-1990 149/36 06-08-1989 147/38 30
15-10-2000 148/36 24-09-2001 147/38 30
17-10-2010 149/36 03-10-2010 147/38 30
08-10-2015 148/37 15-09-2015 147/38 30
11-02-2000                      SRTM DEM 30
17-10-2011                     ASTER DEM 30
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stress). The value of g used in this study is 9.8 m/s2. 
Since this is a slope dependent method, the slope was 
derived using SRTM DEM for 2000 and ASTER DEM 
for 2011. The volume estimation method developed by 
Nye (1952) and applied by many workers (Raper and 
Braithwaite, 2009a; Kamb and Echelmeyer, 1986; James 
and Carrivick, 2016; Farinotti et al., 2009a; Raper and 
Braithwaite, 2009b; Bahr et al., 1998; Azam et al., 2012) 
is slope dependent, which is calculated using DEM in 
most of the studies (Hoelzle et al., 2007; Li et al., 2012; 
Agarwal and Tayal, 2013).

Area-related Thickness Estimations
An empirical relation between mean thickness and 
area of the glacier has been given by  Chaohai and 
Sharma (1988), Singh et al. (2015), Bolch et al. (2011a), 
Schauwecker et al. (2015) and Bolch et al. (2011b).

	 H =	–11.32 + 53.21 F0.3	 (2)

where H is the mean glacier thickness (m) and F is the 
glacier area (sq. km).

Volume-Area Scaling
For estimating the ice volume of any glacier, Volume–
Area scaling has been the most widely used approach. 
Ice volume is calculated as a function of surface area, 
as large glaciers tend to be thicker. This method is 
simple to use and swiftly provides glacier volumes 
when provided with scaling parameters along with 
area. In general form, Volume–Area scaling relation is 
expressed as:

	 V =	cAγ 

where V is glacier volume, A the glacier area, and c and 
γ two scaling parameters.

In our study, we used sets of scaling parameters from 
Chen and Ohmura (1990) who proposed values for c 
and γ to be 0.2055 and 1.36 respectively by regression 
analysis of data measured from 63 European glaciers 
because use of these scaling parameters provide volume 
of these glaciers close to that calculated from the field 
studies. These laws have been successfully used for 

tracing glacier volume changes in the Himalayas and 
has come up with comparable results (Frey et al., 2013; 
Bahr et al., 2015).

Results 

Area obtained for both the glaciers using Landsat 
data shows cumulative change of –13.5% for Kolahoi 
Glacier and –2.12% for Chhota Shigri glacier, since 
1980. This indicates that Kolahoi glacier is losing its 
area faster than the Chhota Shigri. Progressive change 
in the surface area of the Kolahoi glacier was –5.86% 
during 1980-1990 and –0.10% from 1990-2000, but has 
lost close to 7.4% since 2000. Similarly, area change 
of Chhota Shigri glacier was computed as 0.7% before 
2001, but 1.26% since 2001. Decadal rate of change 
in surface area of two glaciers is different, and the 
trend of change is also different. While Chhota Shigri 
glacier shows variation in area loss trends as compared 
to trends before 2000, surface area of Kolahoi glacier 
was almost stagnant during 1990-2000, but has lost 
almost 0.2 km2 since then, equivalent to 7.4% of its 
area (Table 2; Figure 2). 

Length of both the glaciers is decreasing with a 
cummulative change of –10.22% in the length of 
Kolahoi and –2.6% in Chhota Shigri glacier. Based on 
centreline measurements with the help of GIS tools, 
the annual rate of retreat of Kolahoi and Chhota Shigri 
glacier is about 15.6 and 7 metres per year respectively. 
However, this rate of retreat has not been uniform for 
all the decadal time intervals. For example, Kolahoi 
glacier shows a retreat of 114 m in the pre-2000 period, 
which increased by almost three times during the post-
2000 period, showing a total retreat of 550 metres in 35 
years time. Similar to the trend in area change, Chhota 
Shigri glacier shows a retreat of 250 m in 35 years, with 
a near uniformity in retreat rate in pre- and post 2000 
periods (Figure 3). 

An AAR of more than 50% generally represents a 
good glacier health (Mernild et al., 2013). Accumulation 
Area Ratio (AAR) was derived from satellite images and 

Table 2: Decadal change in area and length of the glaciers

      Decadal area change (in %)        Decadal length change (in %)
Year Kolahoi Chhota Shigri Kolahoi Chhota Shigri
1980-90 -5.8 -0.32 -1.0 -0.95
1990-2000 -0.1 -0.39 -1.1 -0.28
2000-2010 -6.9 -0.94 -5.4 -0.92
2010-2015 -1.1 -0.48 -3.0 -0.47
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Figure 2: Frontline changes of both the glaciers.

Figure 3: Area change of Kolahoi and Chhota Shigri glaciers.
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compared with ELA estimates from field observations. 
ELA for Kolahoi glacier is almost stagnant lying within 
a specific zone above 4100 masl, indicating AAR values 
ranging between 45-40% throughout the study period. 
In fact, increase in AAR is also observed over some 
decades which may be due to decrease in total area of 
the glacier than the actual downward shifting of ELA. 
On the contrary, most recent observations of ELA for 
Chhota Shigri glacier (since 2009) indicate a positive 
trend and expansion of AAR mainly due to increase in 
area of Accumulation Zone (Azam et al., 2016). 

Volume Change of the Kolahoi Glacier and 
Chhota Shigri Glacier 

Glacier Flow Mechanics Method
Using Glacier Flow Mechanics method, the volume 
was found to be 0.14 km3 and 0.65 km3 in 2000 and 
0.12 km3 and 0.60 km3 in 2010, for Kolahoi and Chhota 
Shigri glaciers respectively. This indicates a decline 
of 11.26% and 7.48% in the volume of two glaciers 
respectively, during the decade.

Thickness-Area Scaling (T-A) Method
Using Thickness-Area scaling method, volume of 
Kolahoi glacier was estimated to be 0.19 km3 in 1980 
and 1.45 km3 for Chhota Shigri glacier indicating a large 
difference in ice content of two glaciers. Progressively, 
Kolahoi glacier lost –7.85%, –0.13% during 1980 to 
1990, 1990 to 2000 and almost –10.7% since 2000. 
Simultaneously, Chhota Shigri glacier lost 0.4%, 0.5% 
during 1980 to 1990 and 1990 to 2000, but has lost 
almost 1.8% since 2000. Cumulative volume change 
for the two glaciers has been estimated to be –17.8% 
for Kolahoi and –2.8% for Chhota Shigri glacier during 
the study period of 35 years (Table 3; Figure 4). 

Volume-Area Scaling (V-A) Method
Using Volume-Area scaling method, volume of Kolahoi 
glacier was estimated to be 0.96 km3 in 1980 and 7.23 
km3 for Chhota Shigri glacier, which are highly inflated 
as compared to estimates using T-A method. Cumulative 
decrease in the volume of Kolahoi and Chhota Shigri 
glacier was found to be 17.19% and 2.87% respectively, 
during the study period of 35 years. Progressively, 
Kolahoi glacier lost 7.88% and 0.14% during 1980 to 
1990 and 1990 to 2000, and 10.7% since 2000, and 
Chhota Shigri glacier lost 0.43% and 0.52% during 
1980 to 1990 and 1990 to 2000, and 1.93% since 2000 
(Table 3; Figure 5).

Discussion

Glaciers in the Himalayas are changing both vertically 
and horizontally. Change in any of the glacier-
dimensions leads to variation in volume of the glaciers. 
Most of the glaciers in the Himalayas are losing mass 
with some exceptions which are surging (Bolch et al., 
2012; Cogley, 2011; Gardelle et al., 2013; Grinsted, 
2013). Both the studied glaciers—Kolahoi and Chhota 
Shigri glacier—representing Jhelum and Chenab basins 
of Indus river system, retreated at the rate 15.6 m/yr 
and 7 m/yr and lost 13.5% and 2.1% of their surface 
area respectively, during the span of 35 years. This 
rate of retreat was found to be comparable with studies 
on other glaciers in Himalayas—Samudratapu glacier 
(18.45 m/yr 1963-2004; Shukla et al. (2009)), Dokriani 
glacier (16.6 m/yr 1962-1995; Dobhal et al. (2004)), 
East Rathong Glacier (15.1 m/yr 1962-2011; Agarwal 
and Tayal (2013)). However, this rate of retreat was 
not uniform for both the glaciers and over the decades, 

Table 3: Volume of the glaciers using various methods

Glacier Year
Glacier-Flow Mechanics 

Method (km3)
Volume Area Scaling 

Method (km3)
Area Thickness 
Method (km3)

Kolahoi 1980   0.959 0.197
1990   0.883 0.181
2000 0.142 0.882 0.181
2010 0.126 0.800 0.164
2015   0.787 0.161

Chhota Shigri 1980   7.232 1.445
1990   7.200 1.438
2000 0.655 7.162 1.431
2010 0.606 7.070 1.413
2015   7.024 1.404
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in last 15 years. On the contrary, Chhota Shigri glacier 
shows a consistency in its declining trend, being nearly 
stable during decades before 2000 but shows almost a 
doubling of rate of areal loss since 2000 as compared to 
earlier decade. Corresponding to the trends in length and 
area change, volume change also follows a similar trend. 

V-A method gives highly inflated volume estimates 
as compared to T-A method for both the glaciers, but 
cumulative volume decrease for the two glaciers was 
estimated to be same using both V-A and T-A methods 
i.e. 18% for Kolahoi and 3% for Chhota Shigri glacier 
during the study period of 35 years. Furthermore, both 
the glaciers indicate a strong temporal variability in 
deglaciation and increase in ice loss during recent time 
period. Stagnancy in ice volume change was observed 
for Kolahoi glacier during 1990-2000, which has 
altered into a time period of rapid loss being witnessed 
currently. On the contrary, volume loss estimates using 
empirical relationships show that Chhota Shigri glacier 
is loosing ice but the rate of loss is nearly uniform 
though with higher ice loss trend recently. This is 
supported from lowering ELA in last decade (Azam 
et al., 2016). 

As Nye (1952) method is slope dependent, which is 
calculated using DEM in most of the studies, availability 
and accuracy of DEMs influence the volume estimates. 
Freely available DEMs like SRTM: 11 Feb 2000 
(Farr et al., 2007) and ASTER GDEM: 17 Oct 2011 
(Tachikawa et al., 2011) are available for recent periods 
only, so an earlier assessment using Nye (1952) is not 
possible. There are reported glitches in the empirically 
established methods of volume estimation. For example, 
for the entire Himalaya, Bolch et al. (2012) report that 
empirical estimates produce highly uncertain results and 
the values range from about 2300 km3 (estimated using 
method that takes the slope-dependent ice thickness 
into account) to ~3600 to ~6500 km3 calculated 
using volume-area scaling method. Scaling factors 
used in scaling equations rely on several iterations 
of running of the same method for different data sets 
and, hence, are advised to be used with caution. In 
this study also, volumetric estimation using different 
empirically established equations produced different 
results. Sensitivity analysis of area vs volume loss 
conducted for the two glaciers indicate that accuracy 
in area estimation of glaciers is very important, which 
is highly limited due to quality of images available for 
time period earlier than 2000.

Figure 4: Decadal change in volume using thickness-area 
method.

indicating high variation in individual response of 
glaciers to their micro-climatic settings.

Glacier surface area reported by inventory based 
on toposheets of 1970s (GSI, 2009) and surface area 
of 1980 based on satellite data, show significant 
difference for Kolahoi glacier, especially due to 
correction incorporated into the glacier image based 
on field observations i.e. 11.5 km2 (GSI, 2009) 13.57 
km2 (Murtaza and Romshoo, 2016) in contrast to 3.1 
km2 being used in this study. Correspondingly, volume 
estimates for Kolahoi glacier also differ 0.58 km3 (GSI, 
2009), 1.894 km3 (Murtaza and Romshoo, 2016) and 
~0.2 km3 as per this study, for 1980. 

A comparative assessment of volume change patterns 
between Kolahoi and Chhota Shigri glaciers indicate 
remarkably different trends. Deglaciation being reflected 
in percentage loss in area of volume of Kolahoi glacier 
is faster than the Chhota Shigri, Kolahoi being a smaller 
glacier than Chhota Shigri. Kolahoi was almost stagnant 
during 1990-2000, but has lost almost 8% of its area 

Figure 5: Decadal change in volume using 
volume area scaling method.
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Conclusions

Most of the glaciers in the Himalayas have retreated 
with accelerated rate of mass-loss during last few 
decades (Bolch et al., 2012). The present study, aimed 
at calculating glacier volume change using indirect 
assessment techniques, indicates that glaciers in Jhelum 
and Chenab basin have also followed the established 
trend of cumulative ice loss since 1980. However, the 
rate of change in ice volume of glaciers has not been 
uniform, and shows variation on a decadal time scale. 
This further strengthens the fact that individual glaciers 
have different response to climatic parameters which 
may be due to difference in their location, size, debris 
cover, micro-climatic parametres etc. Time periods of 
high ice loss have intermittent periods of lower rate of 
ice loss. Decades with no loss or slight mass gains can 
also be observed, but on a cumulative scale, glaciers 
are losing ice. 

Different empirical relationships of volume estimation 
have severe limitations and give varying estimates, 
but the pattern of change is almost consistent across 
different methods. Variation in assessment of length 
and area of glaciers has direct bearing on volume 
estimates using empirical techniques, which need to 
be improved through more field based observations 
and measurements, as well as refinement in remote-
sensing techniques. This study also underlines the 
significance of comparative assessment to strengthen 
the understanding on varying melt response of glaciers 
in Himalayas. 
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